Chapitre 3

Systèmes linéaires

On va étudier dans ce chapitre un cas particulier d'équations différentielles. Plus précisément on va s'intéresser à des équations différentielles sur R linéaires qui sont de la forme

$$\frac{d}{dt}X = A(t)X + B(t) \tag{3.1}$$

où A est une matrice $n \times n$ et B(t) est un vecteur de taille n qui dépendent du temps $t \in \mathbb{R}$. $X(t) = (x_1(t), \dots, x_n(t))$ est la fonction inconnue à déterminer. L'équation (3.1) s'appelle aussi "système linéaire".

On appelle "équation homgène associée" à l'équation (3.1) l'équation sans second membre suivante

$$\frac{d}{dt}X = A(t)X.$$

On va s'intéresser dans la suite au cas lorsque la matrice A(t) ne dépend pas de t. Pour résoudre le système (3.1) on doit définir l'exponentiel d'une matrice.

3.1 Exponentiel d'une matrice

La fonction exponentielle scalaire $\exp : \mathbb{R} \to \mathbb{R}$ ne permet pas de calculer l'exponentiel d'une matrice. Par contre on connaît le développement de cette fonction qui est sous la forme

$$\forall x \in \mathbb{R}, \quad \exp(x) = \sum_{k=0}^{+\infty} \frac{1}{k!} x^k.$$

On donne donc une définition analogue à ce développement pour définir l'exponentiel d'une matrice.

Définition 27 (Exponentiel d'une matrice). Soient $n \in \mathbb{N}$ et M une matrice d'ordre $n \times n$. On appelle "exponentiel de M" et on note $\exp(M)$ la quantité suivante

$$\exp(M) = \sum_{k=0}^{+\infty} \frac{1}{k!} M^k,$$

où M^k est k fois le produit de la matrice M et où M^0 est la matrice identité d'ordre n.

Le calcul de l'exponentiel d'une matrice n'est pas toujours trivial, car on doit calculer à chaque fois le produit matriciel M^k . On va voir quelques exemples où on peut calculer ect exponentiel.

Exemple 28. Si

$$M = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix},$$

alors

$$M^2 = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$M^{3} = \begin{pmatrix} 0 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

Donc pour tout $k \ge 3$

$$M^k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

On déduit que

$$\exp(M) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{1!} \begin{pmatrix} 0 & 4 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} + \frac{1}{2!} \begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 4 & 8 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix},$$

Proposition 29. Soient $n \in \mathbb{N}$ et M une matrice d'ordre $n \times n$, alors la série entière de somme partielle $(S_N)_{N \in \mathbb{N}}$ définie par

$$S_N = \sum_{k=0}^{N} \frac{1}{k!} M^k$$
,

converge vers une matrice d'ordre $n \times n$ dans l'espace des matrices d'ordre $n \times n$ muni de la norme ||.|| usuelle.

Démonstration. Comme pour toute matrice A et B d'ordre $n \times n$ on a $||AB|| \le ||A||||B||$ donc $||M^k|| \le ||M||^k$. On a donc

$$||S_N|| \le \sum_{k=0}^{N} \frac{1}{k!} ||M||^k \to_{N \to +\infty} \exp(||M||).$$

Donc S_N converge absolument d'où S_N converge.

Il existe des cas particuliers où on peut calculer l'exponentiel d'une matrice. On a donc les propiétés suivantes

Proposition 30. Soient $n \in \mathbb{N}$ et M une matrice d'ordre $n \times n$.

(3.2). Une base de S s'appelle "ensemble fondamental" du système (3.2).

Démonstration. Montrons que les éléments de S sont des solutions. On a

$$\exp(tA) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} A^k.$$

D'après la proposition 29 sur tout compact [a, b] de \mathbb{R} la série converge uniformément, donc

$$\frac{d}{dt} \exp(tA) = A \sum_{k=1}^{+\infty} \frac{t^{k-1}}{(k-1)!} A^{k-1} = A \exp(tA).$$

Donc pour tout vecteur constant $X_0 \in \mathbb{R}^n$ la fonction $X(t) = \exp(tA)X_0$ vérifie

$$\frac{d}{dt}X = AX,$$

qui est une solution de (3.2). On remarque par linéarité du système que S est un espace vectoriel. Montrons qu'il est de dimension n:

Soit $X_1(t), \ldots, X_n(t)$ des solutions de conditions initiales vérifiant $X_1(t_0) = e_1, \ldots, X_n(t_0) = e_n$ où e_1, \ldots, e_n est la base canonique de \mathbb{R}^n . Montrons qu'elle est génératrice :

On a pour tout $Y(t) \in S$ il existe $Y = (y_1, ..., y_n) \in \mathbb{R}^n$ tel que

$$Y(t) = \exp(tA)Y = y_1 \exp(tA)e_1 + ... y_n \exp(tA)e_2 = y_1X_1(t) + ... + y_nX_n(t).$$

donc $X_1(t), \dots, X_n(t)$ est une famille génératrice de S.

Montrons que c'est une famille linéairement indépendante. Par l'absurde, supposons qu'elle n'est pas libre donc il existe $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$ tel que

$$\sum_{i=1}^{n} \lambda_i X(t) = 0.$$

Si M est une matrice triangulaire avec des 0 dans la diagonale alors

$$\exp(M) = \sum_{k=0}^{n-1} \frac{1}{k!} M^k.$$

Si M est une matrice diagonale (M = diag(m₁,...,m_n)) alors

$$\exp(M) = diag(\exp(m_1), ..., \exp(m_n)).$$

• Si A et B sont deux matrices $n \times n$ qui commuttent (i.e, AB = BA) alors

$$\exp(A + B) = \exp(A) \exp(B)$$
.

La matrice exp(M) est une matrice inversible de plus (exp(M))⁻¹ = exp(−M).

3.2 Systèmes linéaires homogènes à coefficients constants

On considère dans R le système linéaire à coefficients constants suivant

$$\frac{d}{dt}X = AX ag{3.2}$$

où A est une matrice à coefficients constants d'ordre $n \times n$ et $X : \mathbb{R} \to \mathbb{R}^n$ est la fonction inconnue à déterminer. Dans la suite on considère un temps initiale $t_0 \in \mathbb{R}$

Proposition 31. On note S l'ensemble de solutions du système (3.2). Alors S est un espace vectoriel de dimension n et est donné par

$$S = \{\exp(tA)Z, \quad Z \in \mathbb{R}^n\},\$$

et on appelle la matrice $\exp(tA)$ qui dépend du temps $t \in \mathbb{R}$ la "résolvante" du système

Done il existe aussi $t_* \in \mathbb{R}$ et tel que

$$\sum_{i=1}^{n} \lambda_i X(t_*) = 0.$$

Sans perte de généralité supposons que $\lambda_1 \neq 0$. On a alors

$$X_1(t_*) = \sum_{i=0}^n \lambda_i X_i(t_*).$$

Mais $-\sum_{i=2}^n \lambda_i X_i(t) \in S$ donc c'est une solution de (3.2). Par unicité de solution

$$X_1(t) = -\sum_{i=2}^{n} \lambda_i X_i(t), \quad \forall t \in \mathbb{R}.$$

En particulier

$$X_1(t_0) = -\sum_{i=0}^{n} \lambda_i X_i(t_0).$$

Contradiction avec le fait que $X_1(t_0) = e_1 \dots X_n(t_0) = e_0$ ou e_1, \dots, e_n) qui est une base (famille libre).

Remarque 32. Si $X_1(t), \dots, X_n(t)$ est un ensemble fondamental de S. On appelle la matrice

$$\left(X_1(t)X_2(t)...X_n(t)\right)$$
,

matrice fondamentale et on a

$$(X_1(t)X_2(t)...X_n(t)) = \exp(tA)(X_1(t_0)X_2(t_0)...X_n(t_0)),$$

car $X_i(t) = \exp(tA)X_i(t_0)$ pour tout $1 \le i \le n$.