الجمهورية الجزائرية الديموقراطية الشعبية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العالى والبحث العلمي

MINISTERE DE LENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE جامعة غليزان Université de Relizane

Faculté des Sciences et de la Technologie

Département des Sciences et Techniques

UE Methodologique : TP PHYSIQUE-1

Coefficient:1

Credits: 2

TP Nº ..

Date de l'expérience :/	_
Enseignant :	
Somnte rendu •	

Nom et Prénom	Groupe	Note
1		
2		
3		
4		
5		
<i>3</i>		

Universté de Relizane TP N° 1: Calcul d'erreurs

Objectifs

Calculs les incertitudes

- Mesure directe.
- Mesure indirecte.

Matériel utilisé

Le montage de la manipulation se trouve sur la figure.

On rappelle:

La valeur moyenne :
$$\bar{G} = \frac{G_1 + G_2 + G_3 + \cdots}{n}$$
 1,2,3...)

Ecart:
$$\Delta G = |G_i - \bar{G}|$$
; (i=

Incertitude: ΔG_{max}

L'incertitude relative : $\frac{\Delta G}{\bar{G}}$

La grandeur physique mesurée : $G = (\bar{G} \pm \Delta G_{max})$ unité

Addition: y = x + zSoustraction: y = x - z $\Delta y = \Delta x + \Delta z$

Multiplication: y = xz $\Delta y = z\Delta x + x\Delta z$

Division:

 $y = \frac{x}{z}$ $\Delta y = \frac{z\Delta x + x\Delta z}{z^2}$ $\frac{\Delta y}{y} = \frac{\Delta x}{x} + \frac{\Delta z}{z}$

Les incertitudes absolues s'ajoutent pour l'addition et la soustraction. Les incertitudes relatives s'ajoutent pour la multiplication et ladivision.

Introduction au calcul d'incertitudes

Il est impossible de connaître la valeur exacte d'unegrandeur physique: il est très important de connaîtrel'incertitude (erreur) de la mesure.

Deux types d'erreurs:

<u>Erreurs systématiques:</u> affectent le résultat constamment etdans le même sens. Eliminer, ou corriger le résultat, sipossible!

<u>Erreurs accidentelles (statistiques):</u> répéter les mesures, calculer la moyenne et évaluer l'incertitude en utilisant lastatistique.

Incertitudes absolues et relatives

Si la vraie valeur d'une grandeur est a et la valeur mesurée est a_0 , Δa est

<u>L'incertitude absolue</u>: le résultat s'écrit: $a \pm \Delta a (a$ et Δa ont la même unité de mesure).

Incertitude relative: $\frac{\Delta a}{a}$ (exprimée souvent en %).

Un résultat est toujours suivi de son incertitude. L'unité de mesure doit toujours être indiquée.

Étude expérimentale : mesure directe

et indirecte

Utilisez l'une des tables du laboratoire

Chaque étudiant mesure la longueur et la largeur du même tableau à résultats sont enregistrés dans un tableau.

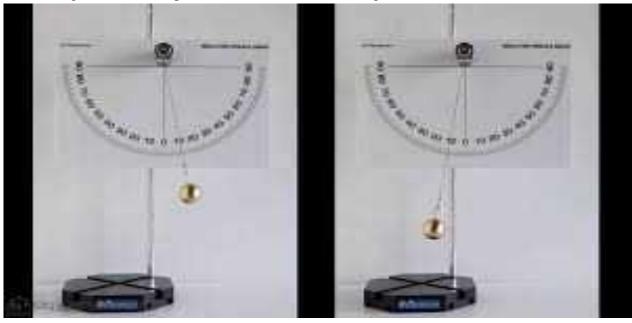
	Etudiant 1	Etudiant 2	Etudiant 3	Etudiant 4	Etudiant 5	Etudiant 6
L(cm)						
<u></u>						
\overline{L} (cm)						
ΔL (cm)						
$\Delta L_{max}(cm)$						
W(cm)						
\overline{W} (cm)						
ΔW(cm)						
ΔW_{max} (cm)		1	1	1	l	<u>I</u>
	4 1 4 11					

- 1- Compléter le tableau
- 2- Ecrire sous la forme $G=\overline{(G} + \Delta G)$ les grandeurs L et W.
- 3- Calculer la surface S moyenne de la table.
- 4- Claculer ΔS .

Ecrire sous la forme $G = \overline{(G + \Delta G)}$ la grandeur physique S.

Universté de Relizane

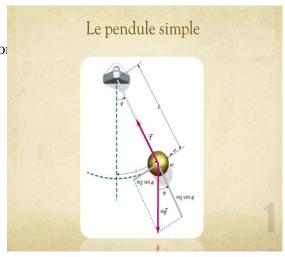
TP N° 2 : Pendule Simple


Objectifs

Mettre en évidence le mouvement d'un système mécanique élémentaire : le pendule simple.

- Etudier l'influence de différents paramètres sur la période propre d'un pendule simple.
- Rechercher l'expression de la période.

Matériel utilisé


Le montage de la manipulation se trouve sur la figure.

Étude théorique

On suspend une petite masse m un fil attaché par so support.

- 1. Faire une représentation schématique du système étudie.
- 2. Représenter les différentes forces appliquées à la masse *m*.
- 3. Quelle est la nature du mouvement du pendule ?
- 4. Trouver l'expression du période T.
- 5. Trouver la dimension de cette grandeur.

Étude expérimentale : recherche expérimentale de la période T du pendule

Soit $\theta=10^{\circ}$, l'angle initial que fait le pendule avec la verticale avant de le lâcher, et soit la masse m=50g. Mesurer la durée de 10 périodes t=10T pour différentes valeurs de la longueur L etcompléter le tableau suivant :

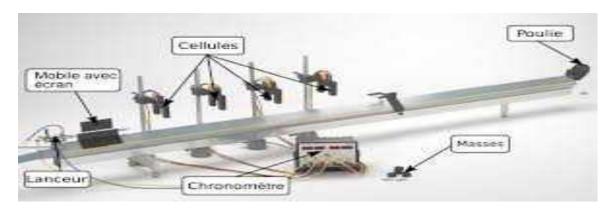
L(m)		0.20	0.40	0.60	0.80
t	(s)				
T	(s)				
$T^2(s^2)$					

- 1. Donner l'erreur sur la longueur L.
- 2. Donner l'erreur sur la période T.
- 3. Tracer le graphe : $T^2 = f(L)$ sur papier millimètre.
- 4. Déduire, du graphe, la valeur de l'accélération de la pesanteur terrestre *g* ainsi que son incertitude absolue.
- 5. Donner le résultat sous la forme : $g = \pm$ (unité).
- 6. Quelle longueur de fil permet à un pendule de battre la seconde ? c'est à dire, $\frac{T}{2} = 1s$.

Universté de Relizane

TP N° 3 : vérification de la 2ème Newton

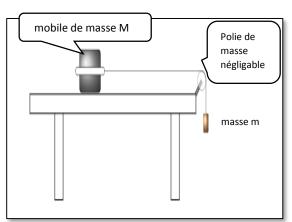
Objectifs


On détermine sur un rail à coussin d'air dans le cas d'un mouvement rectiligne uniformément accéléré, la fonction temps – chemin parcouru et la fonction vitesse – temps, ainsi que la relation entre mass, accélération et force. Précisément notre but est de réaliser le principe fondamental de la dynamique et de vérifier la seconde loi de Newton.

Matériel utilisé

Le montage de la manipulation se trouve sur la figure ci-contre. Vous disposez du matériel suivant :

- 01 pince de table.
- 01 tige carrée de 1m. 50g.
- 01 tige carrée de 25cm.
- 01 marqueur de temps de fréquence *f* =50Hz.
- 01 mètre métal de longueur L=2m.
- 01 porte-poids de masse m=10g.
- 09 poids à fente noirs de masse m=50g.


- 01 rail de longueur l=90cm.
- 01 chariot de masse à vide de
- 02 fils électriques.
- 01 poulie.
- 01 générateur.
- 01 noix double.
- 01 bande enregistreuse.

Etude théorique

Sur la figure si dessue, M représente la masse du chariot ainsi que m la masse posée dans le porte poids de masse égale à m' relie au chariot via la poulie. Le mouvement s'effectue sans force de frottement le long d'un rail horizontal.

- 1. Faire une représentation schématique du système étudié.
- 2. Faire le bilan des forces en négligeant les forces de frottements.

- 3. En déduire l'expression de l'accélération *a* du chariot.
- 4. Écrire l'équation du mouvement du chariot, et donner la nature de ce mouvement.

Etude expérimentale

La manipulation se devise en trois parties, dans chacune d'elles, on préserve la vitesse initiale égale à zéro, on fixe la masse m portée par le porte poids et on varie la distance x progressivement sans oublier de prendre le temps t effectué pour que le chariot parcourt la distance x.

Manipulation:1

On prend la masse portée m égale à m=5g.

х	(m)			
t	(s)			
t^2	(s^2)			

- 1. Compéter le tableau,
- 2. Tracer la courbe $x=f(t^2)$,
- 3. Déduire graphiquement l'accélération du mouvement du système et la nature du mouvement.
- 4. Calculer g en utilisant relation trouvée dans la question 4(étude théorique).

Manipulati:2

On prend la masse portée m égale à m=15g.

X	(m)			
t	(s)			
t^2	(s^2)			

Manipulati:3

On prend la masse portée m égale à m=20g.

х	(m)			
t	(s)			
t^2	(s^2)			

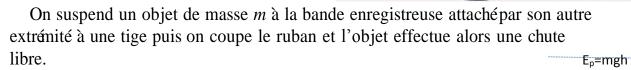
Conclusion

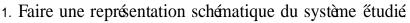
Comparez les résultats obtenus

Universté de Relizane TP N° 4 : la chute Libre

Objectifs

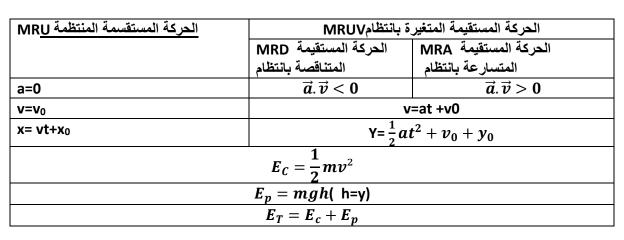
Montrer que tout corps qui effectue une chute libre possède une accélération constante.


Montrer que l'énergie mécanique d'un corps soumis uniquement à son poids est


constante.

Matériel utilisé

- -01 Appareil à chute de bille.
- 01 Compteur universel.
- -01 Compteur digital 2-1.
- -01 Pied de support en "A" PASS.
- -Noix double PASS.
- -01 Porte-plaque, ouverture 0...10mm.
- -01 Curseur pour mètre, rouge, plastique, la paire.
- -01 Mètre de démonstration, l=1000x27mm.
- -01 Tige carrée PASS, l=1000mm.



- 2. Représenter les différentes forces appliquées à l'objet de masse m.
- 3. Écrire l'équations du mouvement de l'objet, en choisissant le sol comme origine des positions
- 4. Trouver les relations des étrgies cinétique $E_{\mathcal{C}}$ et potentielle $E_{\mathcal{D}}$

On rappelle:

 $E_p=0$

Manipulation

- 1- Identifier l'équipement et vérifier les connexions électriques du dispositif de l'expérience.
- 2- Fixer la distance et mettre le chronomètre digital en position mesure de temps.
- 3- Fixer la bille et mettre le chronomètre en position START.
- 4- Déclencher le mouvement en lâchant la bille par la disposition.

Étude expérimentale

2. 1-remplir le tableau ci-dessous

Y(m)	0.2	0.3	0.4	0.5	0.6	0.8
t(s)						
t ² (s ²)						
Vf (m/s)						
V _{f (m/s)} E _c (j)						
E _p (j)						
E _⊤ (j)						

- 1. Treer le graphe $y = f(t^2)$
- 2. Quelle est la nature du mouvement?
- 3. Déduire, du graphe, la valeur de l'accélération de la pesanteur terrestre g ainsi que son incertitude absolue($(\Delta t = 0; \Delta y = 0.5cm)$).
- 4. Donner le résultat sous la forme : $g = \dots \pm \dots$ (unité)
- 5. Tracer, sur la même feuille millimétrée, les graphes $E_C = f(t^2)$, $E_P = f(t^2)$ et $E_T = f(t^2)$
- 6. Que peut-on dire de l'énergie mécanique ET?