Université Ahmed Zabana -Relizane-Faculté de Science Technologie Département Génie Mécanique

Travaux Pratiques Méthodes Numériques

Année Universitaire 2021 – 2022

Enseignante : M^{me} Bot Ikram

TP N°1 : Résolution numérique des équations non linéaires

But du TP

Dans ce TP, nous allons implémenter les algorithmes des méthodes de résolution des équations non linéaires étudiées: la méthode de *Dichotomie*, la méthode de *Point fixe* et la méthode de *Newton-Raphson*.

Énoncé du TP

Soit l'équation non linéaire : $f(x) = x^2 - 2 = 0$

- 1) Déclarer la fonction f(x) avec x = -10 : 0.001 : 10
- 2) Tracer le graphe y = f(x) sur un intervalle tel qu'il vous permet de localiser la solution de l'équation.
- 3) Il est à noter que, les solutions exactes de cette équation sont $x_1 = \sqrt{2}$ et $x_2 = -\sqrt{2}$ et on veut trouver la première racine x_1 de cette équation en utilisant :

a) La méthode de dichotomie

- \triangleright Quel est le nombre d'opération nécessaire pour atteindre une précision de s=0.01 si on prend l'intervalle [0,3]?
- Ecrire un script qui implémente la méthode de *Dichotomie* suivant les étapes :
 - ❖ Déclarer a, b et s
 - ❖ Initialiser un compteur d'itération
 - Ecrire l'algorithme en incrémentant le compteur i à chaque passage de boucle
 - ❖ Arrêter la boucle quand la largeur de l'intervalle devient inférieure ou égale à s
 - ❖ Afficher la solution calculée ainsi que le nombre d'itérations.
- Faire dérouler le programme et remplir la table ci-dessous :

i	a	b	c	f(a)	f(b)	f(c)	S

b) La méthode de point fixe

- \triangleright Quelles sont les formes possibles de la fonction g(x) ?
- ➤ Quelle est la fonction qui vérifie le théorème précédent, sur l'intervalle [0, 3] ?
- Ecrire un programme Matlab qui donne la solution de cette équation. Prendre s = 0.01 et $x_0 = 0$ puis $x_0 = 3$. Conclure!.

c) La méthode de Newton-Raphson

- Ecrire un programme Matlab qui donne la solution de cette équation. Prendre s = 0.01 et $x_0 = 2$ puis $x_0 = 3$. Conclure!.
- 4) Comparer les résultats des différentes méthodes implémentées.

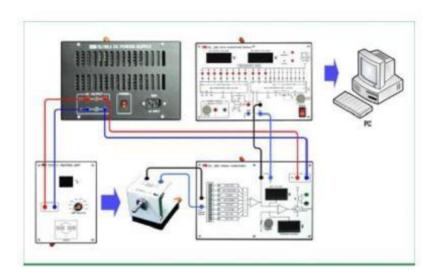
$TP N^{\bullet}2: Interpolation et approximation polynômiale$

But du TP

Durant ce TP, nous allons implémenter sous Matlab des algorithmes d'interpolation étudiés pendant le cours de méthodes numériques : la méthode de **Lagrange** et la méthode de **Newton**

Énoncé du TP

Pendant les travaux pratiques de mesures on a effectué la caractérisation d'une thermistance, la chaine de mesure et le matériel utilisé dans cette expérimentation sont illustrés sur la figure suivante :



Les résultats expérimentaux ont donnés la caractéristique reportée sur le tableau :

Température ($25^{\circ}C$)	15	20	30	40	50	60
Resistance (Ω)	15.11	14.04	9.28	6.44	4.44	2.9

- a) Tracer la courbe résistance en fonction de température ?
- b) Interpolation de Lagrange
 - ❖ Déterminer d'abord ce polynôme de façon analytique.
 - Ecrire un algorithme sous MATLAB permettant l'implémentation de la méthode de Lagrange.
 - Déterminer la valeur estimée de la résistance à la température $T = 35^{\circ}C$

- c) Interpolation par le polynôme de Newton
 - ❖ Déterminer le degré du polynôme de Newton qui passe par tous ces points ?
 - ❖ Donner l'expression du polynôme de Newton correspondant ?
 - * Réaliser un algorithme sous MATLAB permettant l'implémentation de la méthode de Newton ?
 - Quelle est la valeur estimée de la résistance à la température $T = 35^{\circ}C$?

TP N° 3: Intégration numérique de fonctions

But du TP

Le but de ce TP est le calcul numérique d'une intégrale définie en utilisant les méthodes du point milieu, des trapèzes et de Simpson.

Énoncé du TP

On se propose de calculer l'intégrale définie :

$$I = \int_0^3 \ln(2x+1) \, dx$$

- Ecrire un programme qui calcule cette intégrale en utilisant les méthodes du point milieu, du trapèze et de Simpson avec n=10.
- Calculer la valeur exacte de l'intégrale et comparer les résultats de chaque méthode, conclure.
- ➤ Refaire l'exécution avec n=150
- Etudier l'influence du nombre de sous-intervalles (n) sur l'erreur d'intégration
- > Appliquez les mêmes étapes pour l'intégrale :

$$I = \int_{0}^{2\pi} \cos(x) \ dx$$

TP N° 4 : Résolution numérique des équations différentielles

But du TP

Le but de ce TP est l'implémentation de la méthode d'Euler et la méthode de Range Kutta pour la résolution d'équations différentielles.

Énoncé du TP

Soit l'équation différentielle (1)

$$\mathbf{y} = \frac{y}{1+t^2} \tag{1}$$

Avec y(0) = 1, t $\varepsilon[0 \ 0.4]$ et un pas d'intégration h=0.2

- 1-Calculer la solution exacte de l'équation (1)
- 2-Résoudre numériquement l'équation (1) ,par le biais de la méthode d'Euler et de Runge-Kutta
- 3-Afficher sur la même figure ,la solution exacte ainsi que les solutions estimées
- 4-Comparer la solution exacte avec les approximations précédentes . Conclure !

TP N°5 : Résolution numérique des systèmes d'équations linéaires

But du TP

Durant ce TP, nous allons implémenter les méthodes numériques de résolution des systèmes d'équations linéaires (Méthode de Gauss, de Jacobi et de Gauss-Seidel).

Énoncé du TP

Soit le système linéaire suivant :

$$A * x = B$$

Ou:
$$A = \begin{bmatrix} 10 & 7 & 5 \\ 7 & 8 & 6 \\ 8 & 9 & 5 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$

- \triangleright Calculer x = inv(A) * B.
- ➤ Résoudre ce système en utilisant la méthode de Gauss, de Jacobi et de Gauss-Seidel.
- ➤ Comparer les résultats obtenus. Conclure !.

TP N°6 : Résolution numérique des équations non linéaires 2

But du TP

Dans ce TP, nous allons implémenter les algorithmes des méthodes de résolution des équations non linéaires étudiées: la méthode de *Dichotomie* etla méthode de *Newton-Raphson*.

Énoncé du TP

Soit l'équation non linéaire : $f(x) = x^2 - 3x - 4 = 0$

- 1) Déclarer la fonction f(x) avec x = -2:5
- 2) Tracer le graphe y = f(x) sur un intervalle tel qu'il vous permet de localiser la solution de l'équation.
- 3) Il est à noter que, les solutions exactes de cette équation sont $x_1 = -1$ et $x_2 = 4$ et on veut trouver la première racine x_1 de cette équation en utilisant :

a) La méthode de dichotomie

- \triangleright Quel est le nombre d'opération nécessaire pour atteindre une précision de s=0.01 si on prend l'intervalle [-2, 5] ?
- Ecrire un script qui implémente la méthode de *Dichotomie* suivant les étapes :
 - ❖ Déclarer a, b et s
 - ❖ Initialiser un compteur d'itération
 - ❖ Ecrire l'algorithme en incrémentant le compteur i à chaque passage de boucle
 - ❖ Arrêter la boucle quand la largeur de l'intervalle devient inférieure ou égale à s
 - ❖ Afficher la solution calculée ainsi que le nombre d'itérations.
- Faire dérouler le programme et remplir la table ci-dessous :

i	a	b	c	f(a)	f(b)	f(c)	S

TP N°7 : Résolution numérique des systèmes d'équations linéaires 2

But du TP

Durant ce TP, nous allons implémenter les méthodes numériques de résolution dessystèmes d'équations linéaires (Méthode de Gauss, de Jacobi et de Gauss-Seidel).

Énoncé du TP

Soit le système linéaire suivant :

$$A * x = B$$

Ou:
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 3 & 0 & 3 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

- \triangleright Calculer x = inv(A) * B.
- ➤ Résoudre ce système en utilisant la méthode de Gauss, de Jacobi et de Gauss-Seidel.
- ➤ Comparer les résultats obtenus. Conclure !.