Série d'exercice N°3

Exercice n °1:

Un mélange équimolaire d'un ester et de NaOH (0.01mole) sont introduite dans un litre à 27°C. Si l'ordre égale 2.

Calculer la constante de vitesse sachant qu'après 2h les 3/4 de l'ester sont saponifiés.

Exercice n °2:

A 25°C, en phase gazeuse le pentoxyde de diazote (N2O5) se décomposé selon l'équation en dessous :

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

On a mesurée la concentration en $N_2 O_5$ à intervalles des temps réguliers

t(h)	0	5.70	11.40	17.10	22.80
$[N_2O_5]$ M	0.4	0.199	0.101	0.049	0.025

 \mathcal{F} Vérifier que cette réaction est d'ordre un, calculer $t_{\frac{1}{2}}$.

Exercice n °3:

La réaction de saponification de l'acétate d'éthyle peut être suivre en mesurant la concentration de NaOHà différente instants.

t(min)	0	3	5	7	10	15	21	25
10 ³ .[NaOH] (mol/l)	10	7.4	6.3	5.5	4.6	3.6	2.9	2.5

 \checkmark Vérifier que la réaction est du deuxième ordre sachant que a = b.

Evaluer la constante de vitesse, calculer $t_{\frac{1}{2}}$.

Exercice n °4:

Soit la réaction $A + B \rightarrow C + D$, montrer que si les concentrations initiales de chacun des réactifs est « a », il existe une relation de la forme.

 $t_{\frac{1}{2}} = Ya^{-(n-1)}$. Donner l'expression de Y.

Une série d'expériences à donner les résultats suivants :

a. 10 ² (M)	1	2	4	8
$t_{\frac{1}{2}}$ (min)	17.8	8.9	4.5	2.2

En utilisant la relation précédente, déterminer l'ordre de la réaction.

Exercice n °5:

On introduit 0.015 mole de soude NaOH et 0.015 mole d'un ester soluble dans 1 litre d'eau à 27°C.

- 1. Sachant que la réaction est d'un ordre global à deux et qu'au bout de 1.5 heures. Les 3/4 de l'ester sont saponifiés. Calculer la constante de vitesse et le temps de demi-réaction.
- 2. La constante vitesse de la réaction est multipliée par quatre lorsque la température passe de 27°C à 127°C. Calculer le temps de demi-réaction à 127°C ainsi que l'énergie d'activation de la réaction.

Solution N°1:

Calcul la constante de vitesse

Un mélange équimolaire \Rightarrow a = b

	este	+ NaOH	→ C	+ P
à t=0	a	b	0	0
$\dot{a} t \neq 0$	а-х	b-x	X	X

$$v = -\frac{d[A]}{dt} = K[A][B]$$

$$v = -\frac{d(a-x)}{dt} = K(a-x)(b-x) = K(a-x)^{2}$$

$$v = \frac{dx}{(a-x)^{2}} = Kdt$$

$$\int_{a}^{a-x} \frac{dx}{(a-x)^{2}} = \int_{0}^{t} Kdt$$

$$\left| \frac{1}{(a-x)} \right|_{a}^{(a-x)} = Kt$$

$$\frac{1}{a-x} - \frac{1}{a} = Kt$$

$$\frac{1}{a-\frac{3}{4}a} - \frac{1}{a} = Kt \Leftrightarrow \frac{4}{a} - \frac{1}{a} = Kt \Leftrightarrow \frac{3}{a} = Kt \Rightarrow K = \frac{3}{at} = \frac{3}{0.01(2)} \Rightarrow K = 150 \quad l/mol.h$$

Solution N°2:

Vérification que cette réaction est d'ordre un

$$N_{2}O_{5} \rightarrow 2NO_{2} + \frac{1}{2}O_{2}$$

$$N_{2}O_{5} \rightarrow 2NO_{2} + \frac{1}{2}O_{2}$$

$$\dot{a} t=0 \qquad a \qquad 0 \qquad 0$$

$$\dot{a} t \neq 0 \qquad a-x \qquad 2x \qquad \frac{1}{2}a$$

$$v = -\frac{d(a-x)}{dt} = K(a-x)$$

$$\frac{dx}{dt} = K(a-x)$$

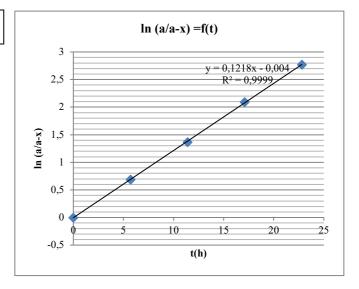
$$\frac{dx}{(a-x)} = Kdt$$

$$\int_{a}^{a-x} \frac{dx}{(a-x)} = K \int_{0}^{t} dt$$

$$-ln(a-x) + lna = Kt + C$$

$$ln \frac{a}{a-x} = Kt$$

4/1-	`	Λ	5.70	11 40	17.10	22.002
t(h	1)	U	5.70	11.40	17.10	22.80^{2}


a la	0	0.69	1.37	2.09	2.77
$\frac{in}{a-x}$					
	a .	7.4.			

On trace $ln\frac{a}{a-x} = f(t)$

$K = 0.12 h^{-1}$

& Calcul $t_{\frac{1}{2}}$

$$t_{\frac{1}{2}} = \frac{\ln 2}{K} = \frac{\ln 2}{0.12} = 5.77h$$

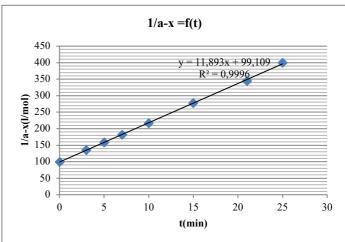
Solution N°3:

 \checkmark Vérification que la réaction est du deuxième ordre sachant que a = b.

	A	+ B	<i>→ C</i> +	- <i>P</i>
à t=0	a	b	0	0
$\dot{a} t \neq 0$	а-х	b-x	X	X
		J[\ \]		

$$v = -\frac{d[A]}{dt} = K[A][B]$$

$$v = -\frac{d(a-x)}{dt} = K(a-x)(b-x) = K(a-x)^2$$


$$v = -\frac{d(a-x)}{dt} = K(a-x)(b-x) = K(a-x)^{2}$$

$$v = \frac{dx}{(a-x)^{2}} = Kdt$$

$$\int_{a}^{a-x} \frac{dx}{(a-x)^{2}} = \int_{0}^{t} Kdt$$

$$\left|\frac{1}{(a-x)}\right|_{a}^{(a-x)} = Kt$$
On trace $\frac{1}{a-x} = f(t)$

On trace $\frac{1}{a-x} = f(t)$

t(min)	0	3	5	7	10	15	21	25
$\frac{1}{a-x}$ (l/mol)	100	135.13	158.73	181.82	217.39	277.77	344.83	400

- Evaluation de la constante de vitesse K= 11.893 l/mol.min
- \mathcal{F} Calcul $t_{\frac{1}{2}}$

$$t_{\frac{1}{2}} = \frac{1}{aK} = \frac{1}{(0.01)(11.893)} = 8.4$$
$$t_{\frac{1}{2}} = 8.4 \text{ min}$$

Solution n °4:

	A	+ B	<i>→ C</i> +	- P
à t=0	a	ь	0	0
$\dot{a} t \neq 0$	а-х	b-x	X	X

Expression de Y

$$v = -\frac{d[A]}{dt} = K[A][B]$$

$$v = -\frac{d(a-x)}{dt} = K(a-x)^n$$

$$v = \frac{dx}{(a-x)^n} = Kdt$$

$$\int_a^{a-x} \frac{dx}{(a-x)^n} = K \int_0^t dt$$

Après l'intégration on trouve

$$\frac{1}{n-1} \left[\frac{1}{(a-x)^{n-1}} \right]_a^{a-x} = K[t]_0^t$$

$$\frac{1}{n-1} \left(\frac{1}{(a-x)^{n-1}} - \frac{1}{a^{n-1}} \right) = Kt$$

$$at_{\frac{1}{2}} \Rightarrow a - x = \frac{a}{2}$$

$$\frac{1}{n-1} \left(\frac{1}{\left(\frac{a}{2}\right)^{n-1}} - \frac{1}{a^{n-1}} \right) = Kt_{\frac{1}{2}}$$

$$\frac{2^{n-1} - 1}{a^{n-1}(n-1)} = Kt_{\frac{1}{2}} \Rightarrow t_{\frac{1}{2}} = \frac{2^{n-1} - 1}{a^{n-1}(n-1)K}$$

On suppose que $Y = \frac{2^{n-1}-1}{(n-1)K}$

$$t_{\frac{1}{2}} = \frac{Y}{a^{n-1}} \Rightarrow t_{\frac{1}{2}} = Ya^{-(n-1)}$$

$$lnt_{\frac{1}{2}} = lnY. a^{-(n-1)} \Rightarrow lnt_{\frac{1}{2}} = lnY - (n-1)lna$$

On trace $lnt_{\frac{1}{2}} = f(lna)$

Ln(a) (M)	-4.6	-3.91	-3.22	-2.52

$ln(t_{\frac{1}{2}})$ (min)	2.88	2.19	1.5	0.79

Détermination l'ordre de la réaction.

$$-(n-1) = -0.9957 = 1 \Rightarrow -n+1 = -1 \Rightarrow -n = -2$$

⇒n=2⇒réaction d'ordre deux

Solution n °5:

1. Calcul la constante de vitesse et le temps de demi-réaction

Un mélange équimolaire \Rightarrow a = b = 0.015

	este	+ NaOH	$I \rightarrow C$	+	P
à t=0	a	b	0		0
à t ≠ 0	а-х	b-x	Х		X

$$v = -\frac{d[A]}{dt} = K[A][B]$$

$$v = -\frac{d(a-x)}{dt} = K(a-x)(b-x) = K(a-x)^{2}$$

$$v = \frac{dx}{(a-x)^{2}} = Kdt$$

$$\int_{a}^{a-x} \frac{dx}{(a-x)^{2}} = \int_{0}^{t} Kdt$$

$$\left| \frac{1}{(a-x)} \right|_{a}^{(a-x)} = Kt$$

$$\frac{1}{a-\frac{3}{4}a} - \frac{1}{a} = Kt \Leftrightarrow \frac{4}{a} - \frac{1}{a} = Kt \Leftrightarrow \frac{3}{a} = Kt \Rightarrow K = \frac{3}{at} = \frac{3}{0.015(1.5)} \Rightarrow K = 133.33 \quad l/mol. h$$

$$a - x = \frac{a}{2} \Rightarrow \frac{1}{a-x} - \frac{1}{a} = \frac{1}{\frac{a}{2}} - \frac{1}{a} = Kt_{\frac{1}{2}} \Rightarrow t_{\frac{1}{2}} = \frac{1}{aK} = \frac{1}{0.015 * 133.33} \Rightarrow t_{\frac{1}{2}} = 0.5h = 30min$$

2. Calcul le temps de demi-réaction à 127°C ainsi que l'énergie d'activation de la réaction.

$$v_{127^{\circ}C} = 4 * v_{27^{\circ}C} \Rightarrow K_{127^{\circ}C}(a - x)^{2} = 4 * K_{27^{\circ}C}(a - x)^{2} \Rightarrow K_{127^{\circ}C} = 4 * K_{27^{\circ}C}$$

$$t_{\frac{1}{2}} = \frac{1}{aK_{127^{\circ}C}} = \frac{1}{a4 * K_{27^{\circ}C}} = \frac{1}{0.015 * 4 * 133.33} = t_{\frac{1}{2}} = 0.125h = 7.5min$$

La relation d'Arhennius est de la forme

$$K = Ae^{-E_a/RT}$$

$$K_{127^{\circ}C} = 4 * K_{27^{\circ}C} \Rightarrow \frac{K_{127^{\circ}C}}{K_{27^{\circ}C}} = 4 \Leftrightarrow \frac{Ae^{-Ea/400R}}{Ae^{-Ea/300R}} = 4 \Leftrightarrow \frac{e^{-Ea/400R}}{e^{-Ea/300R}} = 4 \Leftrightarrow e^{-Ea/400R} - e^{-Ea/300R} = 4$$
$$\Leftrightarrow e^{\frac{-E_a}{R}\left(\frac{1}{400} - \frac{1}{300}\right)} = 4 \Leftrightarrow e^{\frac{-E_a}{R}\left(\frac{1}{1200}\right)} = 4 \Rightarrow \frac{E_a}{R}\left(\frac{1}{1200}\right) = \log(4)$$
$$\Rightarrow E_a = 1200 * R * \log(4) = 1200 * 2 * \log(4) = E_a = 1444.94 cal/mol$$