- Universitaire de Relizane-

TD 01: Tribu

Exercice 01:

Soient E et F deux ensembles et $f: \Omega \to E$ une application.

1) Si \mathcal{E} est une tribu de E, on note :

$$\mathcal{T} = f^{-1}(\mathcal{E}) = \left\{ f^{-1}(B); B \in \mathcal{E} \right\}$$

1. Montrer que \mathcal{T} est une tribu sur E

Soient $\Omega = \{-1, 0, 1, 2\}, E = \{0, 1, 4\}, f : x \to x^2.$

3. Déterminer $f^{-1}(\mathcal{P}(E))$.

Question 2 : Soit \mathcal{A} une σ -algèbre sur X. Posons $f(\mathcal{A}) = (f(\mathcal{A}) : B \in \mathcal{A})$. Est ce que $f(\mathcal{A})$ est une σ -algèbre sur Y (Justifier

Exercice 02:

Soit E un ensemble infini. On définit la famille \mathcal{D} de parties de E par

 $\mathcal{D} = \{A \in \mathcal{P}(X) : A \text{ est au plus dénombrable } \text{ où } A^c \text{ est au plus dénombrable } \}$

1. Montrer que \mathcal{D} est une tribu sur E

Exercice 03:

Soit $(E_2; \mathcal{E}_2)$, un espace mesurable et soit $E_1 \subset E_2$ (on ne suppose pas nécessairement que E_1 appartient à \mathcal{E}_2). On introduit la classe d'ensembles suivante.

$$\mathcal{E}_1 = \{B \cap E_1, B \subset \mathcal{E}_2\}$$

- a) Montrer que \mathcal{E}_1 est une tribu sur E_1 . C'est la tribu trace de \mathcal{E}_2 sur E_1 .
- b) Soient $E_1 = \{1, 2\}$ et $E_2 = \{1, 2, 3\}$ Choisir une tribu \mathcal{E}_2 sur E_2 telle que sa tribu trace \mathcal{E}_1 sur E_1 n'est pas incluse dans \mathcal{E}_2 .