
Scanning Electron Microscopy SEM

Scanning electron microscopes (SEM) :

The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens The signals that derive from <u>electron-sample interactions</u> reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. In most applications, data are collected over a selected area of the surface of the sample, and a 3-dimensional image is generated that displays spatial variations in these properties. Areas ranging from approximately 1 cm to 5 microns in width can be imaged in a scanning mode using conventional SEM techniques (magnification ranging from **20X** to approximately **30,000X**, spatial resolution of (50 to 100 nm). The SEM is also capable of performing analyses of selected point locations on the sample; this approach is especially useful in qualitatively or semi-quantitatively determining chemical compositions (using <u>EDS</u>), crystalline structure, and crystal orientations (using <u>EBSD</u>).

3. Vitesse des électrons et longueur d'onde

La relation entre la longueur d'onde (λ) d'une particule de masse , m, se déplaçant avec une vitesse, v, est donnée par l'équation de De Broglie :

$$\lambda = \frac{h}{mv}$$
 (1)

Un électron de charge e (1.6 •10⁻¹⁹ coulomb), et de masse m (9.11•10⁻²⁸ g), quand il est accéléré par une différence de potentiel de V volts (exprimée en joules/coulomb), a une énergie cinétique de :

$$\frac{1}{\epsilon}mv^2 = eV$$
(2)

Correspondant à une vitesse de:

$$-\sqrt{\frac{2eV}{m}}$$

Se substituant dans l'équation de De Broglie (1):

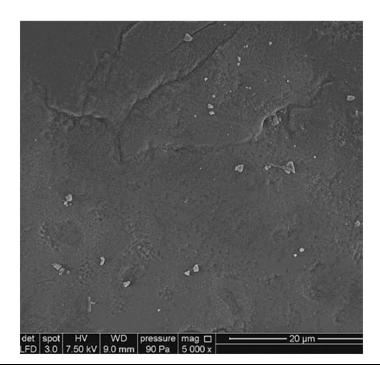
$$\lambda = \left(\frac{h}{m}\right) * \frac{1}{\sqrt{\frac{2eV}{m}}} = \sqrt{\frac{h^2}{2meV}}$$
(4)

$$\lambda = \sqrt{\frac{150}{V}} * 10^{-8} cm = \frac{1.23}{\sqrt{V}} nm$$
(5)

Comme 1 joule = 107 dyne.cm = 107 g.cm².s⁻² :

De sorte que pour une différence de potentiel V = 60,000 volts, la longueur d'onde λ = 0.005 nm. A partir de l'équation (3) la vitesse des électrons peut être calculée à partir de V:

$$v = 0.593 \times 10^{\circ} \sqrt{Vcm} / \sec$$
 (6)


La Table (1) illustre le fait qu'à haut voltage, la vitesse de l'électron dans le vide se rapproche de celle de la lumière (c = 3•1010 cm/sec).

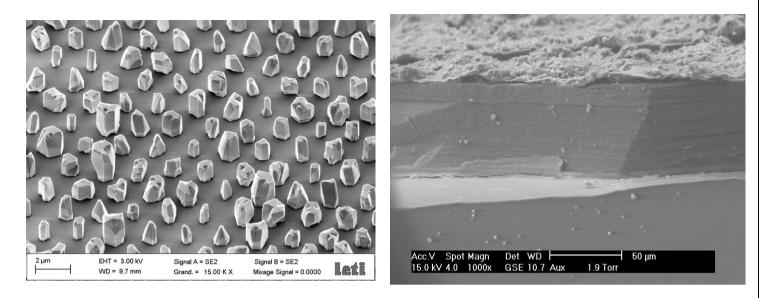
V (volts)	λ (nm)	v (10- ¹⁰ cm.s ⁻¹)	v/c
10,000	0.0123	0,593	0,198
50,000	0.0055	1.326	0.442
100,000	0.0039	1.875	0.625
1,000,000	0.0012	5.930	1.977!

En fait, l'équation devient incorrecte quand la vélocité de l'électron s'approche de la vitesse de la lumière, et une correction relativiste doit être apportée pour la valeur de la masse:

$$m_1 = \frac{m_0}{\sqrt{1 - \frac{\nu^2}{c^2}}}$$
 (7)

La relation entre la longueur d'onde λ et la tension d'accélération V est donnée de manière exacte par:

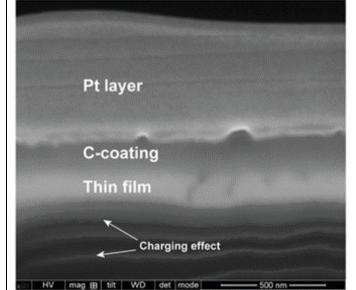
$$\lambda = \frac{1.23}{\sqrt{V+10^{-2}V^2}} nm$$
 (8)

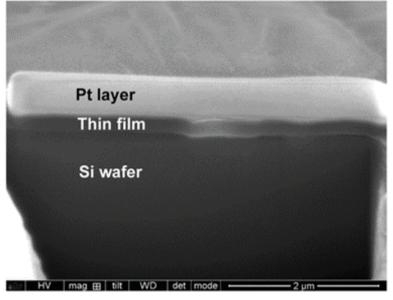

Fig. 2 a Émail d'une face vestibulaire de molaire mandibulaire, sans aucune préparation, grossissement x 5 000 ; on note l'aspect relativement lisse de la surface.

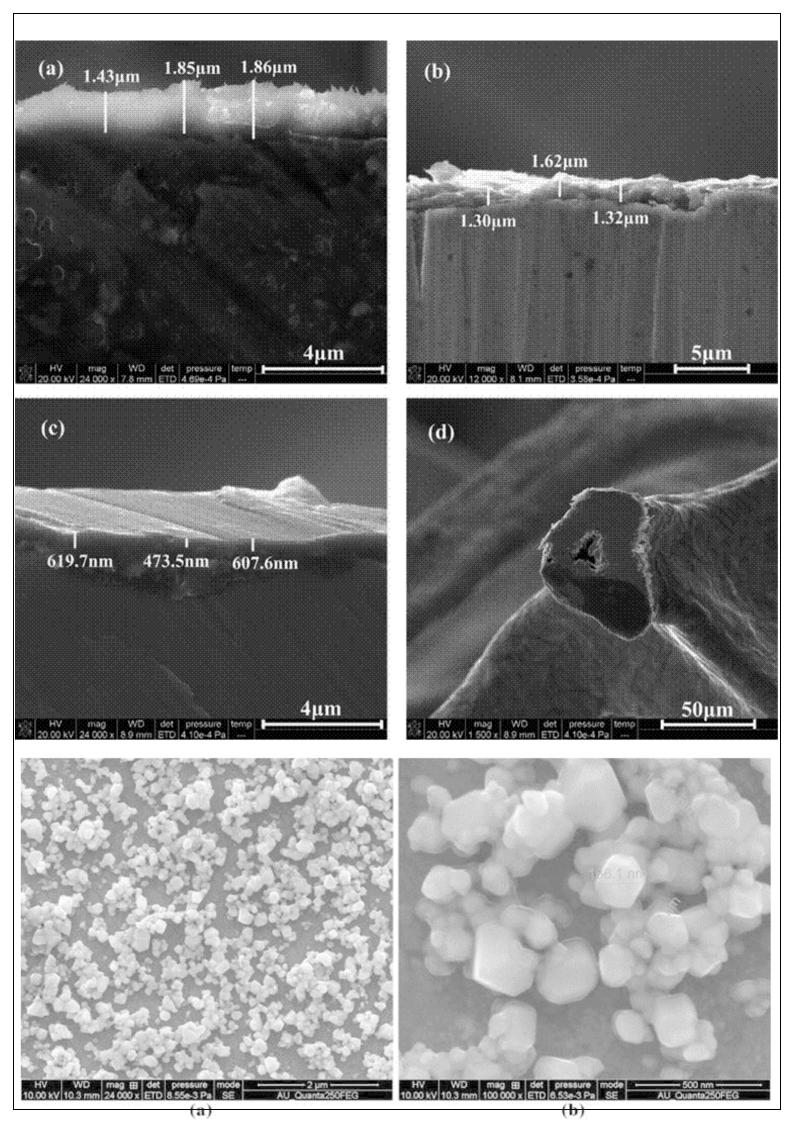
3)

TP

For each image:


Define the working conditions and make a calculation of any dimension and discuss the morphology


Annealed sample (DAp11)



(f) Un-annealed sample (DAp11r)

(g) Thin film on Si wafer

