2021/2022

Université de Relizane Faculté des Sciences et Technologies Département d'Electrotechnique et d'Automatique Filière : Electrotechnique Niveau : L3

Matériaux et introduction à la HT ; TP 02 : Matériaux conducteurs

I. <u>Introduction :</u>

Le matériau conducteur s'échauffe lorsqu'un courant électrique le traverse en raison de sa résistance électrique, c'est ce qu'on appelle le chauffage résistif ou le chauffage Joule. Un couplage fonctionne également dans le sens opposé : la résistance électrique du matériau varie avec la température, en augmentant au fur et à mesure de son échauffement.

Pour un exemple de modèle multi-physique avec couplages thermoélectriques, nous examinons le chauffage par résistance dans une plaque conductrice. La figure ci-dessous représente une plaque de cuivre de $1m \times 1m$ qui contient également un petit trou. L'épaisseur de la plaque n'a aucun effet sur le modèle. Supposons que vous soumettez la plaque à une différence de potentiel électrique entre deux côtés opposés (tous les autres côtés sont isolés). La différence de potentiel induit un courant qui chauffe la plaque.

- 1. Sur la nouvelle page, sélectionnez 2D dans la liste des dimensions de l'espace.
- 2. Dans la liste des modes d'application, ouvrez le menu COMSOL Multiphysics>Electro-Thermal Interaction puis le dossier Joule Heating. Sélectionnez Transient analysis.
- 3. Cliquez sur OK.
- 4. Dans le menu des options, choisissez les constantes :

NAME	EXPRESSION	DESCRIPTION
rO	1.754e-8[ohm*m]	Resistivity at reference temperature
тО	20[degC]	Reference temperature
alpha	0.0039[1/K]	Temperature coefficient
vo	0.1[V]	Electric potential

- **5.** Tracer la figure ci-dessus. Pour créer un trou, sélectionnez les deux objets de géométrie en appuyant sur Ctrl + A. Cliquez sur le bouton **Difference** dans la barre d'outils Dessin.
- 6. <u>Boundary Conditions—Heat Transfer :</u>

SETTINGS	BOUNDARIES 1, 4-8	BOUNDARIES 2, 3	
Туре	Temperature	Thermal insulation	
<i>T</i> ₀	300		

7. <u>Subdomain Settings—Heat Transfer :</u>

PROPERTY	VALUE	
ρ	8930	
Cp	340	
k (isotropic)	384	
Q	Q_dc	

Cliquez sur l'onglet **Init** dans la boîte de dialogue **Subdomain Settings**.Saisissez **300** comme valeur initiale dans le champ de saisie pour T(t0).

8. <u>Boundary Conditions—Conductive Media DC:</u>

SETTINGS	BOUNDARY 1	BOUNDARY 4	BOUNDARIES 2, 3, 5-8
Туре	Electric potential	Ground	Electric insulation
V	V0		

9. <u>Subdomain Settings—Conductive Media DC:</u>

Material properties and sources						
Library material:						
Quantity	Value/Expression	Unit	Description			
Je	0 0	A/m ²	External current density			
Qj	0	A/m ³	Current source			
d	1	m	Thickness			
Conductivity relation: Linear temperature		elation 👻]			
Ρ _ο	r0	Ω∙m	Resistivity at reference temp.			
a	alpha	1/K	Temperature coefficient			
Т	Т	К	Temperature			
т _о	то	К	Reference temperature			

Dans la boîte de dialogue **Subdomain Setting**, cliquez sur l'onglet **Init**, tapez $V_0*(1-x [1/m])$ dans le champ d'édition pour $V(t_0)$. Cette expression signifie que le potentiel initial de distribution varie linéairement de V_0 (0.1 V) à la limite gauche (x = 0) à 0 V à la limite droite (x = 1). Il s'agit d'une condition initiale qui correspond aux conditions aux limites.

10. Ouvrez la boîte de dialogue **Solver Parameters** dans le menu **Solve**, dans **Time dependent** ; taper 0 :50:2000. Et dans **Stationary segregated**, tolérance 10⁻⁵ pour T et V.

II. <u>Préparation du compte rendu :</u>

- 1. Varier le matériau conducteur de la plaque (Al, Cu, Ag, Ni, Fe,...etc).
- **2.** Varier la tension V_0 avec un pas de 0.1V.