Génie Maritime

Définition

Le génie maritime est la branche d'étude qui s'occupe de la conception, du développement, de la production et de l'entretien des équipements utilisés en mer tels que les navires, les sous-marins, les plates-formes pétrolières et les ports.

Rôle du Génie Maritime

- Le Génie Maritime consiste à former des ingénieurs disposant de compétences qui permettent de participer à la conception, au développement et à l'exploitation de systèmes complexes en milieu marin, sous-marin et côtier:
- Maîtrise des connaissances du champ scientifique et technique du génie maritime,
- Maîtrise des outils de modélisation, simulation, mesures et essais sur les fluides et les structures,
- Connaissances de base en mécanique, énergétique, matériaux et automatique.
- On distingue le génie maritime militaire et le génie maritime civil.

Filière du Génie Maritime en Algérie

En Algérie la filière du Génie Maritime se subdivise en deux spécialités. Celles de :

- L'architecture navale et navigation
- L'ingénieur en équipement naval.

Actuellement l'USTO-MB est l'unique université Algérienne qui offre des parcours de formation universitaire dans cette filière.

Métier de l'architecte Naval(e)

- Le métier d'architecte naval(e) s'exerce dans le cadre de la navigation de plaisance et de la navigation de servitude.
- L'architecte naval(e) partage son temps entre son bureau d'études, l'atelier où est conçu le navire, et ses clients.

Architecte Naval(e)

L'architecte naval(e) s'occupe de la conception et de la réalisation des bateaux et autres bâtiments de mer. Son rôle est:

- D'établir les plans techniques et règlementaires du bateau.
 - Déterminer les équipements et les matériaux nécessaires à la construction du bateau.
 - Effectuer des calculs de résistance, consommation, poids...
 - Prendre en charge la conception du bateau jusqu'à sa mise à l'eau.

Exemples d'activités de l'Architecte Naval (e)

L'architecte naval(e) est responsable de la réalisation des projets de conception, de construction, de modification ou de réparation de divers types de navires:

- Embarcations nautiques de plaisance,
- Bateaux de travail,
- Pontons,
- Yachts,
- Navires de combat des incendies,
- Patrouilleurs,
- · Traversiers,
- Remorqueurs,
- Brise-glace,
- Navires de recherche et sauvetage,
- Navires de pêche, côtiers, navires de pêche en haute mer,
- Frégates de patrouille maritime, navires de défense côtière,
- Navires de défense extracôtière, cargos généraux, vraquiers, autres navires marchands, barges, plates-formes de forage ou toute autre structure flottante fixe ou mobile).

L'ingénieur en équipement naval

L'ingénieur en équipement naval est responsable de concevoir, mettre au point, produire et tester des systèmes maritimes:

- Systèmes de coque,
- systèmes de propulsion (moteurs diesel, turbines à Gaz)
- · Systèmes anti-incendie,
- · Machinerie de navire,
- Systèmes électriques, systèmes de distribution de l'air, systèmes électromécaniques et autres équipements connexes d'un navire

Employeurs potentiels

A l'échelle nationale ou internationale, il s'agit principalement de :

- Chantiers navals
- Compagnies maritimes
- Entreprises spécialisées en travaux sous-marins
- Firmes d'ingénieurs-conseils
- Firmes de consultants maritimes
- Forces armées (postes civils ou militaires),
- Gouvernement
- Manufacturiers d'embarcations nautiques
- Sociétés de classification internationales

Enseignements Parcours Génie Maritime

- Mécanique des fluides visqueux (incompressibles)
- Hydrodynamique (houle, écoulements potentiels, corps profilés)
- · Transferts chaleur et masse, dispersion contaminants
- Interaction houle-structure, courants, bathymétrie,
- Courant océanique (écoulements marins, Coriolis, Eckman)
- Modélisation numérique appliquée aux écoulements à surface libre
- Techniques instrumentales (mesure, capteurs, métrologie, TP en mer)
- Matériaux, propriétés physico-chimiques, corrosion, fatigue
- Mécanique du solide .../...
- · Océan-Atmosphère
- Milieux complexes et poreux : mécanique et dynamique
- Hydrodynamique appliquée, Fluide/structure off shore
- Energies marines renouvelables
- Risques environnementaux
- Systèmes sous-marins et installations
- Modèles physiques, essais en bassin : Outils numériques en génie océanique et côtier

Débouchés

Cette formation originale possède de nombreux débouchés au niveau national et international dans des domaines variés comme:

- L'offshore pétrolier et parapétrolier,
- la construction en mer et le génie portuaire,
- les énergies marines renouvelables,
- la protection du littoral et des structures à terre,
- la robotique sous-marine et l'océanographie.