TP

> with(Student[NumericalAnalysis]):

>
$$DE1 := \frac{d}{dt} y(t) = y(t) - t^2 + 1$$
:

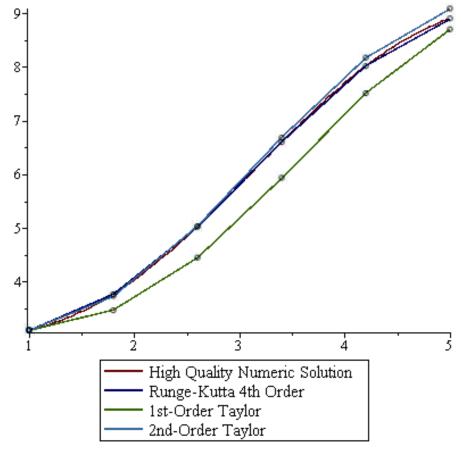
> InitialValueProblem(DE1, y(0) = 0.5, t = 3)

5.066

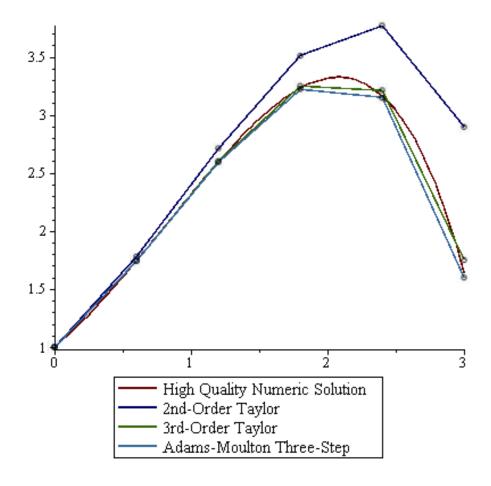
> InitialValueProblem(DE1, y(0) = 0.5, t = 3, output = Error)

0.8916

>
$$DE2 := \frac{d}{dt} y(t) = 1 - \cos(t)$$
:


>
$$DE3 := \frac{d}{dt} y(t) = y(t) - t^2 + \frac{t^3}{9} :$$

the order of the Taylor polynomial used by a Taylor method in the comparewith option can be specified as the second item in the list:


> InitialValueProblem(DE2, y(1) = 3.10, t = 5, method = rungekutta, submethod = rk4, comparewith = [[taylor, 2]], output = information, digits = 3)

$\int t$	[Maple's numeric solution]	[R-K 4th Ord.]	[Error]	[2nd-Ord. Taylor]	[Error]
1.	3.10	3.10	0.	3.10	0.
1.80	3.77	3.77	0.00240	3.74	0.03
2.60	5.03	5.03	0.00398	5.03	0.
3.40	6.60	6.60	0.00283	6.68	0.08
4.20	8.01	8.01	0.00330	8.17	0.16
5.	8.90	8.90	0.000656	9.09	0.19

> InitialValueProblem(DE2, y(1) = 3.10, t = 5, method = rungekutta, submethod = rk4, comparewith = [[taylor, 1], [taylor, 2]], output = plot)

➤ InitialValueProblem(DE3, y(0) = 1, t = 3, method = taylor, order = 2, comparewith = [[taylor, 3], [adamsmoulton, step3]], output = plot)

>