TP N°2 Méthode Numérique

Méthode du point fixe

Le principe de la méthode du point fixe consiste à transformer, la fonction (x) = 0, $f : [a \ b] \to R$, en une fonction $\varphi(x) = x$. La fonction $\varphi : [a \ b] \to R$, est construite de façon à ce que $\varphi(\alpha) = \alpha$ quand $(\alpha) = 0$. Trouver la racine de (x), se résume donc à déterminer un $\alpha \in [a \ b]$ tel que :

$$\alpha = \varphi(\alpha)$$

Dans le cas où un tel point existe, il sera qualifié de point fixe de φ et cette dernière est dite fonction d'itération. Le schéma numérique de cette méthode est donné par :

$$x^{(k+1)} = \varphi(x^{(k)}) \quad pour \quad k \ge 0$$

On rappelle que le vecteur erreur en est calculé à partir de : en = |xn - xapp|. Avec, xapp est la solution approchée, de la valeur exacte, déterminée avec une tolérance fixée préalablement. n, étant le nombre d'itérations. Par ailleurs, l'estimation de l'erreur servira, entre autre, à comparer la vitesse de convergence pour des méthodes numériques différentes. Sur le plan pratique, l'erreur est représentée graphiquement en traçant e_{n+1} en fonction de e_n avec une échelle logarithmique. Ainsi, l'ordre noté p, d'une méthode numérique s'obtient à partir de :

$$|e_{n+1}| \approx A |e_n|^p \Longrightarrow \log |e_{n+1}| \approx p \log |e_n| + \log A$$

Ainsi l'ordre, p, est quantifié via la pente de l'équation ci-dessus. On en déduira que :

- 1. Si $p = 1 \Rightarrow xn$ converge linéairement vers la solution approchée. Dans ce cas on gagne la même quantité de précision à chaque itération.
- 2. Si $p = 2 \Rightarrow xn$ converge quadratiquement vers la solution approchée. Dans ce cas on gagne le double de précision à chaque itération.
- 3. Si $p = 3 \Rightarrow xn$ converge cubiquement vers la solution approchée. Dans ce cas on gagne le triple de précision à chaque itération.

D'un point de vue pratique, et pour un n suffisamment élevé, la vitesse de convergence d'une méthode itérative est évaluée au moyen de la relation :

$$K_p(x,n) = \frac{x_{n+2} - x_{n+1}}{(x_{n+1} - x_n)^p}$$

Université de Relizane

Année Universitaire : 2021-2022

Département de Génie Mécanique

Faculté des Sciences et Technologie

TP N°2 Méthode Numérique

Tenant compte de cette équation, il vient que plus $K_p(x, n)$ tend vers zéro plus la vitesse de convergence de la méthode est élevée.

Exercice 01: Dans cet exercice

Dans cet exercice, il est demandé de trouver la racine de la fonction $f_1(x) = x - cos(x)$, en utilisant la méthode du point fixe.

- 1. Tracer la fonction $f_1(x)$ sur l'intervalle $[-1/2 \ 3]$.
- 2. Écrire un programme Matlab permettant l'implémentation du schéma numérique de cette méthode.
- 3. Afficher, sur le même graphe, la fonction $f_1(x)$ et la solution approchée.
- 4. Afficher le graphe représentant le nombre d'approximations successives (k+1) en fonction du nombre d'itérations.
- 5. Tracer l'évolution de l'erreur en fonction du nombre d'itérations.
- 6. Tracer l'erreur $\ln|e_{n+1}|$ en fonction de $\ln|e_n|$ et déterminer l'ordre de la méthode numérique. Calculer la vitesse de convergence.

Appliquez le même algorithme pour résoudre l'équation : $f_2(x) = x + exp(x) + 1$ avec : $x \in [-2 \ 3/2]$.

On donne: tolérance = 10-6, les valeurs initiales sont x0 = 0.8 pour $f_1(x)$ et x0 = -1/5 pour $f_2(x)$.

Année Universitaire: 2021-2022

TP N°2 Méthode Numérique

```
aaaaaaaaaaaaaaa Script Matlab aaaaaaaaaaaaaaaa
  clear all ; close all ; clc ;
  x0 = 0.8; it = 0; tol = 1e-05; Nbrit = 30;
  while it < Nbrit
7
      it = it +1;
9
      x = cos(x0);
10
      x0 = x;
11
12
      xn(it) = x;
13
14
        if abs(x - cos(x)) < tol
15
          sol = x;
          break
18
      end
19
  end
20
21
  a = 0; b = 3; n = 1000; dx = (b - a)/n; x1 = a:dx:b;
22
  y = inline(\cos(x));
23
24
  figure('color', [1 1 1])
25
  plot(x1, x1, 'k'); hold on; plot(x1, y(x1), 'LineWidth',2); hold on
26
      plot(sol, y(sol), 'ro', 'MarkerSize', 12, 'LineWidth', 2)
27
       hold on ; plot(sol,y(sol) ,'rx', 'MarkerSize',12, 'LineWidth',2)
28
  hold on
30
      plot(sol,0,'ko','MarkerSize',12,'LineWidth',2); hold on
31
   plot(sol, 0, 'kx', 'MarkerSize', 12, 'LineWidth', 2); hold on
32
   line(x1, zeros(1, length(x1)), 'LineStyle', '-.', 'Color', 'k', '
33
     LineWidth',1)
  xlabel('x'); ylabel('f(x)')
  hold on ; line(sol.*ones(1, length(x1)), y(x1), 'LineStyle','-.','
```

جامعة غليزان

Département de Génie Mécanique

TP N°2 Méthode Numérique

```
Color', 'k', 'LineWidth', 1); axis([0 3 -1 1.5])
37
  38
  text('Interpreter', 'latex',...
   'String', '$ x = cos(x) $', 'Position', [2 -1/3], 'FontSize', 15)
40
  text('Interpreter', 'latex', 'String', '$ y = x $',...
41
   'Position', [1.2 1], 'FontSize', 15); text(sol, 2*sol, ['\alpha = ',
42
     num2str(sol)]....
   'Position', [0.8 -1/4], 'BackgroundColor', [1 1 1]);
43
44
  45
  err = abs(xn - sol); error_1 = err(1:end-1); error_2 = err(2: end);
46
47
  figure('color', [1 1 1]); loglog(error_1(1:end-4),error_2(1:end-4),'
48
     +1)
  ylabel('In |e_{n+1}|'); xlabel('In |e_{n}|')
50
  cutoff = 7: % ATTENTION AU CHOIX DE LA NIEME ITERATION
51
52
  pente = (log(error_2(end-cutoff)) - log(error_2(end-(cutoff+1))))/(
53
     log(error_1(end-cutoff)) - log(error_1(end-(cutoff+1)))); %
     VITESSE DE CONVERGENCE logien+1| = logien|
  pente = round(pente);
54
55
  56
  n = 20; % ATTENTION AU CHOIX DE LA NIEME ITERATION
57
  vitesse_CV = (xn(n+2) - xn(n+1))/(xn(n+1) - xn(n));
59
  msg1 = gtext(strcat('CETTE METHODE EST D''ORDRE : ', num2str(pente)))
60
     :% CLIQUER SUR LA FIGURE POUR AFFICHER msg1
61
  msg2 = gtext(strcat('LA VITESSE DE CONVERGENCE VAUT : ', num2str(
62
     vitesse_CV)));
  % CLIQUER SUR LA FIGURE POUR AFFICHER msg2
```