Chapitre 3

Intégrales et calcul des primitives

Introduction

Nous avons vu dans le chapitre de dérivation (Maths 1) le problème suivant : étant donnée une fonction F, trouver sa dérivée f c'est à dire la fonction f(x) = F'(x).

Dans ce chapitre, nous considérons le problème inverse : étant donnée une fonction f, trouver une fonction F telle que sa dérivée soit égale à f, c'est à dire F'(x) = f(x).

Intégrale indéfinie

Définition Soit $f: I \to \mathbb{R}$ une fonction, I est un intervalle quelconque de \mathbb{R} .

On appelle primitive (ou intégrale indéfinie) de f toute fonction $F: I \to \mathbb{R}$ dérivable telle que

$$F'(x) = f(x), x \in I.$$

Exemple $x \mapsto x^2$ est la primitive de $x \mapsto 2x$. La primitive de $x \mapsto \cos x$ est $x \mapsto \sin x$

Remarque (non unicité de primitives)

Soit
$$f(x) = 2x + 1$$
. On a

$$F(x) = x^2 + x$$
, $G(x) = x^2 + x + c$ (c est une constante)

sont deux primitives de f.

Théorème Si F_1 , F_2 sont deux primitives de f, alors

$$F_1 - F_2 = c$$

Conclusion : Si on connait une primitive F de f, toutes les autres primitives de f sont de la forme F+c.

Notation

L'ensemble des primitives d'une fonction f est noté $\int f$ ou encore $\int f(x)dx$

C'est-à-dire :
$$\int f(x)dx = F(x) + c$$

où F est une primitive de f.

Proposition (Linéarité)

Soit I un intervalle de \mathbb{R} , f et $g:I\to\mathbb{R}$ deux fonctions intégrables (admettent des primitives) et $\lambda\in\mathbb{R}$. Alors

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx \quad \text{et } \int \lambda f(x) dx = \lambda \int f(x) dx$$

Primitives des fonctions usuelles

La fonction f	La primitive de f ($c \in \mathbb{R}$).	L'intervalle I
f(x) = k	F(x) = kx + c	\mathbb{R}
$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R} - \{-1\}$	$F(x) = \frac{1}{\alpha + 1} x^{\alpha + 1} + c$]0,+∞[
$f(x) = \frac{1}{x}$	$F(x) = \ln x + c$	$]-\infty$, 0[ou]0, +\infty[
$f(x) = e^x$	$F(x) = e^x + c$	\mathbb{R}
$f(x) = \sin x$	$F(x) = -\cos x + c$	\mathbb{R}
$f(x) = \cos x$	$F(x) = \sin x + c$	$\mathbb R$

Techniques de calcul de primitives

a) Intégration par parties

Proposition Soient u et v deux fonctions dérivables sur un intervalle I.

On a

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Preuve On a

$$(u(x)v(x))' = u'(x)v(x) + u(x)v'(x)$$

$$\Rightarrow \int (u(x)v(x))' dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

$$\Rightarrow u(x)v(x) = \int u'(x)v(x)dx + \int u(x)v'(x)dx$$

$$\Rightarrow \int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Exemple $I = \int x \sin x \, dx$. Posons

$$u(x) = x \implies u'(x) = 1$$

 $v'(x) = \sin x \implies v(x) = -\cos x$

Donc

$$\int x \sin x \, dx = -x \cos x + \int \cos x \, dx$$
$$= -x \cos x + \sin x + c$$

Exercice calculer $I = \int x^2 e^x dx$

Solution Intégration par parties en posant :

$$u(x) = x^2 \implies u'(x) = 2x$$

 $v'(x) = e^x \implies v(x) = e^x$

Donc

$$\int x^2 e^x dx = x^2 e^x - 2 \underbrace{\int x e^x dx}_{I_1}$$

Calculons $I_1 = \int x e^x dx$ par parties en posant

$$u(x) = x \implies u'(x) = 1$$

 $v'(x) = e^x \implies v(x) = e^x$

d'où:
$$I_1 = \int x e^x dx = x e^x - \int e^x dx = x e^x - e^x + c$$

et $I = x^2 e^x - 2(x e^x - e^x) + c = (x^2 - 2x + 2)e^x + c$

b) Intégration par changement de variable

Proposition Soit F une primitive de f et g une fonction dérivable. Alors la fonction f(g(x))g'(x) est intégrable et l'on a

$$\int f(g(x))g'(x)dx = F(g(x)) + c.$$

Autrement dit, en posant u = g(x) on obtient $\frac{du}{dx} = g'(x)$, soit encore du = g'(x) dx et donc

$$\int f(g(x))g'(x)dx = \int f(u) du = F(u) + c$$

Exemple

$$\int \sqrt{\sin x} \cos x \, dx = \int t^{\frac{1}{2}} \, dt \, , \quad t = \sin x \, , dt = dx \cos x$$

$$= \frac{1}{\frac{1}{2}+1} t^{\frac{1}{2}+1} + c$$

$$= \frac{2}{3} \sin^{\frac{3}{2}}x + c$$

$$= \frac{2}{3} \left(\sqrt{\sin x}\right)^3 + c.$$

Remarque

$$\int \frac{g'(x)}{g(x)} dx = \int \frac{1}{t} dt , t = g(x), \qquad dt = g'(x) dx$$
$$= \ln|t| + c$$
$$= \ln|g(x)| + c.$$

Le succés de l'intégration dépend de notre habilité à choisir le changement de variable approprié qui simplifiera les calculs.

Exercice Calculer les primitives suivantes

$$\int \frac{1}{(x-1)^4} dx \ , \ \int \tan x \, dx$$

Solution

1) On pose $t = x - 1 \Rightarrow dt = dx$, alors

$$\int \frac{1}{(x-1)^4} dx = \int \frac{1}{t^4} dt = \int t^{-4} dt$$
$$= \frac{-1}{3} t^{-3} + c$$
$$= \frac{-1}{3(x-1)^3} + c, \qquad c \in \mathbb{R}.$$

2)
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{1}{t} dt \text{ On pose } t = \cos x, \quad \frac{dt}{dx} = -\sin x \implies dx = \frac{-1}{\sin x} dt$$
$$= -\ln|t| + c$$
$$= -\ln|\cos x| + c , \qquad c \in \mathbb{R}.$$

Exercice: Calculer les primitives suivantes:

$$(1.) \int \frac{1}{\sqrt{1+x}} dx \, , (2.) \int \frac{\sin(\ln x)}{x} dx \, , (3.) \int \frac{1}{x \ln x} \, dx \, , (4.) \int e^x \sqrt{e^x + 1} dx \, \, (5.) \int \frac{dx}{3 - 2e^x} dx \, .$$

Solution de L'exercice :

$$\int \frac{1}{\sqrt{1+x}} dx$$
, on pose $t = x + 1 \Longrightarrow dx = dt$.

Alors
$$\int \frac{1}{\sqrt{1+x}} dx = \int \frac{1}{\sqrt{t}} dt = \int t^{-\frac{1}{2}} dt$$

$$= \frac{1}{-\frac{1}{2}+1} t^{-\frac{1}{2}+1} + c$$

$$= 2t^{\frac{1}{2}} + c = 2\sqrt{x+1} + c, \qquad c \in \mathbb{R}.$$

$$\int \frac{\sin(\ln x)}{x} dx \text{ , on pose } t = \ln x \Rightarrow \frac{dt}{dx} = \frac{1}{x} \Rightarrow dx = x dt.$$

Alors
$$\int \frac{\sin(\ln x)}{x} dx = \int \sin t \ dt = -\cos t + c$$

= $-\cos(\ln x) + c$, $c \in \mathbb{R}$.

$$\int \frac{1}{x \ln x} dx = \int \frac{\frac{1}{x}}{\ln x} dx = \int \frac{u'(x)}{u(x)} dx \text{ avec } u(x) = \ln x$$
$$= \ln|u(x)| + c$$

$$=\ln|\ln x|+c, c \in \mathbb{R}.$$

$$\int e^x \sqrt{e^x + 1} dx = \int e^x (e^x + 1)^{\frac{1}{2}} dx = \int u'(x) [u(x)]^{\frac{1}{2}} dx \quad \text{avec } u(x) = e^x + 1$$

$$= \frac{1}{\frac{1}{2} + 1} (e^x + 1)^{\frac{1}{2} + 1} + c$$

$$= \frac{2}{3} (e^x + 1)^{\frac{3}{2}} + c, \qquad c \in \mathbb{R}.$$

$$\int \frac{dx}{3 - 2e^x}$$
, on pose $t = e^x \Longrightarrow \frac{dt}{dx} = e^x \Longrightarrow dx = \frac{1}{t}dt$.

Alors
$$\int \frac{dx}{3 - 2e^x} = \int \frac{dt}{t(3 - 2t)} = \frac{1}{3} \int \frac{dt}{t} - \frac{1}{3} \int \frac{(-2)}{3 - 2t} dt$$

$$= \frac{1}{3}\ln|t| - \frac{1}{3}\ln|3 - 2t| + c$$

$$= \frac{1}{3}x - \frac{1}{3}\ln|3 - 2e^x| + c, \qquad c \in \mathbb{R}.$$

Intégration des fonctions rationnelles

Définition Un polynôme à coefficients dans K ($K = \mathbb{R}$ ou $K = \mathbb{C}$) est une expression de la forme

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

avec $n \in \mathbb{N}$ et $a_0, a_1, \dots, a_n \in K$.

L'ensemble des polynômes est noté K[X].

Les a_i sont appelés les coefficients du polynôme $(0 \le i \le n)$.

On appelle le degré de P le plus grand entier i tel que $a_i \neq 0$, on le note $\deg P$ et on a

$$\int P(x)dx = \int (a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0) dx$$

$$= \frac{a_n}{n+1} x^{n+1} + \frac{a_{n-1}}{n} x^n + \dots + \frac{a_2}{3} x^3 + \frac{a_1}{2} x^2 + a_0 x + c$$

Exemple $\int (x^2 + 2x + 5)dx = \frac{x^3}{3} + x^2 + 5x + c$

Définition Soit f une fonction . On dit que la fonction f est une fonction rationnelle si

 $f(x) = \frac{P(x)}{Q(x)}$, où P(x), Q(x) sont des polynômes à coefficients réels.

a) Intégrale du type : $\int \frac{1}{x+\lambda} dx$, $\lambda \in \mathbb{R}$

$$\int \frac{1}{x+\lambda} dx = \ln|x+\lambda| + c, \quad c \in \mathbb{R}$$

b) Intégrale du type : $\int \frac{1}{(x+\lambda)^n} dx$ et n > 1.

$$\int \frac{1}{(x+\lambda)^n} dx = \frac{1}{1-n} \frac{1}{(x+\lambda)^{n-1}} + c, \quad c \in \mathbb{R}$$

c) Intégrale du type : $\int \frac{\alpha x + \beta}{x^2 + ax + b} dx$ où α, β, a et $b \in \mathbb{R}$ avec $x^2 + ax + b$ possède deux racines réelles p et q, donc :

$$\frac{\alpha x + \beta}{x^2 + ax + b} = \frac{A}{x - p} + \frac{B}{x - q}$$

Par suite on a:

$$\int \frac{\alpha x + \beta}{x^2 + ax + b} dx = \int \frac{A}{x - p} dx + \int \frac{B}{x - q} dx$$
$$= A \ln|x - p| + B \ln|x - q| + c, \qquad c \in \mathbb{F}$$

Exemple Calculer $\int \frac{1}{x^2-1} dx$.

On a:

$$\frac{1}{x^2 - 1} = \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)}$$

Par suite on a:

$$\int \frac{1}{x^2 - 1} dx = \int \frac{1}{2(x - 1)} dx - \int \frac{1}{2(x + 1)} dx$$
$$= \frac{1}{2} \ln|x - 1| - \frac{1}{2} \ln|x + 1| + c$$

d) Intégrale du type : $\int \frac{\alpha x + \beta}{(x^2 + ax + b)^n} dx$ où $\alpha, \beta, \alpha, b \in \mathbb{R}$, $n \in \mathbb{N}^*$ avec $\Delta = a^2 - 4b < 0$.

Proposition Soit $I_n = \int \frac{1}{(x^2+1)^n} dx$, $n \in \mathbb{N}^*$ alors.

1)
$$I_1 = \int \frac{1}{x^2 + 1} dx = \arctan x + c$$

2)
$$I_{n+1} = \frac{1}{2n} \frac{x}{(x^2+1)^n} + \frac{2n-1}{2n} I_n$$
, pour $n \ge 1$.

Preuve

- 1) évident car $(\arctan x)' = \frac{1}{x^2+1}$
- 2) $I_n = \int \frac{1}{(x^2+1)^n} dx$ par parties en posant :

$$u(x) = \frac{1}{(x^2 + 1)^n} \implies u'(x) = -2nx(x^2 + 1)^{-n-1} = \frac{-2nx}{(x^2 + 1)^{n+1}}$$
$$v'(x) = 1 \implies v(x) = x$$

$$I_n = \int \frac{1}{(x^2 + 1)^n} dx = \frac{x}{(x^2 + 1)^n} + \int \frac{2nx^2}{(x^2 + 1)^{n+1}} dx$$

$$= \frac{x}{(x^2 + 1)^n} + n \int \frac{2x^2 + 2 - 2}{(x^2 + 1)^{n+1}} dx$$

$$I_n = \frac{x}{(x^2 + 1)^n} + n \int \frac{2}{(x^2 + 1)^n} dx - n \int \frac{2}{(x^2 + 1)^{n+1}} dx$$

alors $I_n = \frac{x}{(x^2+1)^n} + 2nI_n - 2nI_{n+1}$.

Donc
$$I_{n+1} = \frac{1}{2n} \frac{x}{(x^2+1)^n} + \frac{2n-1}{2n} I_n$$
, pour $n \ge 1$.

- Calculons
$$\int \frac{\alpha x + \beta}{(x^2 + ax + b)^n} dx$$

1) si $\alpha \neq 0$ on a

$$\int \frac{\alpha x + \beta}{(x^2 + ax + b)^n} dx = \frac{\alpha}{2} \int \frac{2x + \frac{2\beta}{\alpha}}{(x^2 + ax + b)^n} dx = \frac{\alpha}{2} \int \frac{2x + a - a + \frac{2\beta}{\alpha}}{(x^2 + ax + b)^n} dx$$

$$= \frac{\alpha}{2} \int \frac{2x + a}{(x^2 + ax + b)^n} dx + \frac{\alpha}{2} \int \frac{-a + \frac{2\beta}{\alpha}}{(x^2 + ax + b)^n} dx$$

$$= \frac{\alpha}{2} \int \frac{2x + a}{(x^2 + ax + b)^n} dx + \frac{\alpha}{2} \left(-a + \frac{2\beta}{\alpha} \right) \int \frac{1}{(x^2 + ax + b)^n} dx$$

A) $\int \frac{2x+a}{(x^2+ax+b)^n} dx$, On choisit $u(x) = x^2 + ax + b \Longrightarrow u'(x) = 2x + a$

$$\int \frac{2x+a}{(x^2+ax+b)^n} dx = \int \frac{u'(x)}{[u(x)]^n} dx = \begin{cases} \ln|u(x)| & \text{si} & n=1\\ \frac{1}{-n+1} [u(x)]^{-n+1} & \text{si} & n \ge 2 \end{cases}$$

$$\mathbf{B}) \int \frac{1}{(x^2 + ax + b)^n} dx$$

$$x^2 + ax + b = \left(x + \frac{a}{2}\right)^2 + \left(b - \frac{a^2}{4}\right)$$
, on pose $t = x + \frac{a}{2}$ et $k^2 = b - \frac{a^2}{4} > 0$, $(dx = dt)$.

$$\int \frac{1}{(x^2 + ax + b)^n} dx = \int \frac{1}{(t^2 + k^2)^n} dt = \int \frac{1}{\left[k^2 \left(\frac{t^2}{k^2} + 1\right)\right]^n} dt = \frac{1}{k^{2n}} \int \frac{1}{\left[\left(\frac{t}{k}\right)^2 + 1\right]^n} dt$$

on choisit $s = \frac{t}{k} \Longrightarrow ds = \frac{1}{k} dt \Longrightarrow dt = kds$

$$\int \frac{1}{(x^2 + ax + b)^n} dx = \frac{k}{k^{2n}} \int \frac{1}{(s^2 + 1)^n} dS \qquad \text{(voir la proposition)}$$

1) si $\alpha = 0$ on a

$$\int \frac{\alpha x + \beta}{(x^2 + ax + b)^n} dx = \int \frac{\beta}{(x^2 + ax + b)^n} dx = \beta \int \frac{1}{(x^2 + ax + b)^n} dx \qquad (voir (B)).$$

Exemple Calculer $\int \frac{3x+6}{(x^2+x+1)^2} dx$.

$$\int \frac{3x+6}{(x^2+x+1)^2} dx = \frac{3}{2} \int \frac{2x+4}{(x^2+x+1)^2} dx = \frac{3}{2} \int \frac{2x+1+3}{(x^2+x+1)^2} dx$$
$$= \frac{3}{2} \int \frac{2x+1}{(x^2+x+1)^2} dx + \frac{3}{2} \int \frac{3}{(x^2+x+1)^2} dx$$
$$= \frac{3}{2} \int \frac{2x+1}{(x^2+x+1)^2} dx + \frac{9}{2} \int \frac{1}{(x^2+x+1)^2} dx$$

A) $\int \frac{2x+1}{(x^2+x+1)^2} dx$, par changement de variable $u(x) = x^2 + x + 1 \Rightarrow u'(x) = 2x + 1$

$$\int \frac{2x+1}{(x^2+x+1)^2} dx = \int \frac{u'(x)}{(u(x))^2} dx = \frac{-1}{u(x)} = \frac{-1}{x^2+x+1} .$$

B)
$$\int \frac{1}{(x^2+x+1)^2} dx = ?$$

on obtient:

 $x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$, par changement de variable $t = x + \frac{1}{2} \Longrightarrow dx = dt$ on obtient

$$\int \frac{1}{(x^2 + x + 1)^2} dx = \int \frac{1}{\left(t^2 + \frac{3}{4}\right)^2} dt = \int \frac{1}{\left(t^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)^2} dt$$
$$= \frac{16}{9} \int \frac{1}{\left(\left(\frac{2t}{\sqrt{3}}\right)^2 + 1\right)^2} dt$$

par changement de variable $s = \frac{2t}{\sqrt{3}} \Longrightarrow ds = \frac{2}{\sqrt{3}} dt$, $\left(dt = \frac{\sqrt{3}}{2} ds\right)$ on obtient :

$$\int \frac{1}{(x^2+x+1)^2} dx = \frac{16}{9} \times \frac{\sqrt{3}}{2} \underbrace{\int \frac{1}{(s^2+1)^2} ds}_{I_2} \quad \text{, d'après } \left(I_{n+1} = \frac{1}{2n} \frac{x}{(x^2+1)^n} + \frac{2n-1}{2n} I_n \right)$$

$$I_2 = \int \frac{1}{(s^2 + 1)^2} ds = \frac{1}{2} \frac{s}{s^2 + 1} + \frac{1}{2} \arctan s,$$
 (n = 1)

Finalement $\left(\text{On a } s = \frac{2t}{\sqrt{3}} \text{ et } t = x + \frac{1}{2} \text{ alors } s = \frac{2x+1}{\sqrt{3}}\right)$

$$\int \frac{3x+6}{(x^2+x+1)^2} dx = \frac{3}{2} \frac{-1}{x^2+x+1} + \frac{9}{2} \left[\frac{16}{9} \times \frac{\sqrt{3}}{2} \left(\frac{1}{2} \frac{\frac{2x+1}{\sqrt{3}}}{\left(\left(\frac{2x+1}{\sqrt{3}} \right)^2 + 1 \right)} + \frac{1}{2} \arctan \left(\frac{2x+1}{\sqrt{3}} \right) \right) \right] + c.$$

Décomposition en éléments simples

Soit $f(x) = \frac{P(x)}{Q(x)}$ une fonction rationnelle par la division euclidienne on obtient :

$$P(x) = Q(x)q(x) + R(x)$$
 telque $\deg R \le \deg Q$.

Donc
$$f(x) = q(x) + \frac{R(x)}{Q(x)}$$

On en déduit que :
$$\int f(x)dx = \int q(x)dx + \int \frac{R(x)}{Q(x)} dx.$$

Si

$$Q(x) = c(x - a_1)^{m_1}(x - a_2)^{m_2} \dots (x - a_k)^{m_k}(x^2 + b_1x + d_1)^{n_1}(x^2 + b_2x + d_2)^{n_2} \dots (x^2 + b_hx + d_h)^{n_h}$$
 on peut écrire

$$\begin{split} \frac{R(x)}{Q(x)} &= \frac{A_{1,1}}{x - a_1} + \frac{A_{1,2}}{(x - a_1)^2} + \dots + \frac{A_{1,m_1}}{(x - a_1)^{m_1}} \\ &+ \frac{A_{2,1}}{x - a_2} + \frac{A_{2,2}}{(x - a_2)^2} + \dots + \frac{A_{2,m_2}}{(x - a_2)^{m_2}} \\ &+ \dots + \\ &+ \frac{A_{k,1}}{x - a_k} + \frac{A_{k,2}}{(x - a_k)^2} + \dots + \frac{A_{k,m_k}}{(x - a_k)^{m_k}} \\ &+ \frac{B_{1,1}x + C_{1,1}}{x^2 + b_1x + d_1} + \frac{B_{1,2}x + C_{1,2}}{(x^2 + b_1x + d_1)^2} + \dots + \frac{B_{1,n_1}x + C_{1,n_1}}{(x^2 + b_1x + d_1)^{n_1}} \\ &+ \frac{B_{2,1}x + C_{2,1}}{x^2 + b_2x + d_2} + \frac{B_{2,2}x + C_{2,2}}{(x^2 + b_2x + d_2)^2} + \dots + \frac{B_{2,n_2}x + C_{2,n_2}}{(x^2 + b_2x + d_2)^{n_2}} \\ &+ \dots + \\ &+ \frac{B_{h,1}x + C_{2,1}}{x^2 + b_hx + d_h} + \frac{B_{h,2}x + C_{2,2}}{(x^2 + b_hx + d_h)^2} + \dots + \frac{B_{h,n_h}x + C_{h,n_h}}{(x^2 + b_hx + d_h)^{n_h}} \end{split}$$

où les $A_{i,j}$, $B_{i,j}$ et $C_{i,j}$ sont des constantes.

Exemple $f(x) = \frac{3x^3 + 2x - 5}{3x^2 - 5x - 2}$. On effectue d'abord la division euclidienne

Ainsi $f(x) = x + \frac{5}{3} + \frac{\frac{37}{3}x - \frac{5}{3}}{3x^2 - 5x - 2}$. Maintenant on décompose le terme $\frac{\frac{37}{3}x - \frac{5}{3}}{3x^2 - 5x - 2}$ en fractions simples on a $3x^2 - 5x - 2 = 3(x + \frac{1}{3})(x - 2)$ et on doit chercher les deux constantes A_1 et A_2 telles que

$$\frac{\frac{37}{3}x - \frac{5}{3}}{3x^2 - 5x - 2} = \frac{A_1}{3x + 1} + \frac{A_2}{x - 2}.$$

En utilisant le principe d'identité des polynômes on a

$$\frac{\frac{37}{3}x - \frac{5}{3}}{3x^2 - 5x - 2} = \frac{A_1(x - 2) + A_2(3x + 1)}{3x^2 - 5x - 2} = \frac{(A_1 + 3A_2)x - 2A_1 + A_2}{3x^2 - 5x - 2} \Leftrightarrow \begin{cases} A_1 + 3A_2 = \frac{37}{3} \\ -2A_1 + A_2 = -\frac{5}{3} \end{cases}$$
$$\Leftrightarrow \begin{cases} A_1 = \frac{52}{21} \\ A_2 = \frac{23}{7} \end{cases}$$

On conclut que

$$f(x) = x + \frac{5}{3} + \frac{52/21}{3x+1} + \frac{23/7}{x-2}$$

et

$$\int f(x)dx = \frac{x^2}{2} + \frac{5}{3}x + \frac{52}{63}\ln|3x+1| + \frac{23}{7}\ln|x-2| + c.$$

Exemple $f(x) = \frac{x-4}{(x-3)(x+1)^2}$. On doit d'abord la décomposer en fraction simples, la fonction f admet la décomposition

$$f(x) = \frac{A_1}{x-3} + \frac{A_2}{x+1} + \frac{A_3}{(x+1)^2}.$$

On détermine les constantes en utilisant le principe d'identité des polynômes

$$\frac{x-4}{(x-3)(x+1)^2} = \frac{A_1(x+1)^2 + A_2(x-3)(x+1) + A_3(x-3)}{(x-3)(x+1)^2}$$

$$= \frac{(A_1 + A_2)x^2 + (2A_1 - 2A_2 + A_3)x + A_1 - 3A_2 - 3A_3}{(x-3)(x+1)^2} \Leftrightarrow \begin{cases} A_1 + A_2 = 0\\ 2A_1 - 2A_2 + A_3 = 1\\ A_1 - 3A_2 - 3A_3 = -4 \end{cases}$$

On conclut que

$$f(x) = \frac{-1/16}{x-3} + \frac{1/16}{x+1} + \frac{5/4}{(x+1)^2}$$

et

$$\int f(x)dx = -\frac{1}{16}\ln|x-3| + \frac{1}{16}\ln|x+1| - \frac{\frac{5}{4}}{x+1} + c.$$

Intégration des fractions rationnelles en e^x

On utilise le changement de variable $t = e^x$ et donc $dt = e^x dx$ ou $dx = \frac{1}{t} dt$

Exemple Calculer $\int \frac{dx}{1+e^x}$. On a

$$\int \frac{dx}{1+e^x} = \int \frac{dt}{t(1+t)}$$
$$= \int \frac{1}{t}dt - \int \frac{1}{t+1}dt$$
$$= \ln|t| - \ln|t+1| + c.$$

Intégrale du type $\int P(x)e^{\alpha x} dx$ où P est un polynôme et $\alpha \in \mathbb{R}^*$.

 $\int P(x)e^{\alpha x} dx$ peut se calculer par une intégration par parties. Mais on peut encore remarquer que

$$\int P(x)e^{\alpha x} dx = Q(x)e^{\alpha x}$$

où Q(x) est un polynôme de même degré que P(x) que l'on déterminera par identification.

Exemple Calculer $I = \int (x^2 + x + 1)e^{-x}dx$. On sait que $I = (ax^2 + bx + c)e^{-x}$ et on obtient a, b, c de la formule

$$(x^2 + x + 1)e^{-x} = [(ax^2 + bx + c)e^{-x}]'.$$

On aura a = -1, b = -3 et c = -4. Finalement, $I = (-x^2 - 3x - 4)e^{-x}$.

Intégration de certaines fonctions trigonométriques

A) Transformation en une intégrale de fonctions rationnelles :

Soit une intégrale de la forme $\int f(\sin x, \cos x) dx$. En effectuant le changement de variable $t = \tan \frac{x}{2}$, les fonctions $\sin x$ et $\cos x$ s'expriment alors sous formes de fonctions rationnelles.

En effet

$$\sin x = \sin\left(\frac{x}{2} + \frac{x}{2}\right) = 2\sin\frac{x}{2}\cos\frac{x}{2}$$

$$= \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{1} = \frac{\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2}}}{\frac{\sin^2\frac{x}{2} + \cos^2\frac{x}{2}}{\cos^2\frac{x}{2}}}$$

$$= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{2t}{1 + t^{2'}}$$

$$\cos x = \cos\left(\frac{x}{2} + \frac{x}{2}\right) = \cos^2\frac{x}{2} - \sin^2\frac{x}{2}$$

$$= \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{1} = \frac{\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}}{\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}}$$

$$= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}$$

et

$$t = \tan \frac{x}{2} \Rightarrow \frac{x}{2} = \arctan t$$
$$\Rightarrow x = 2 \arctan t$$
$$\Rightarrow dx = \frac{2}{1 + t^2} dt.$$

Donc on a:

$$t = \tan\frac{x}{2} \Rightarrow dx = \frac{2}{1+t^2} dt$$

$$\sin x = \frac{2t}{1+t^2}$$

$$\cos x = \frac{1-t^2}{1+t^2}$$

$$\tan x = \frac{2t}{1-t^2}$$

$$\cot x = \frac{1-t^2}{2t}$$

Exemple Calculer $\int \frac{1}{\sin x} dx$.

On a:

$$\int \frac{1}{\sin x} dx = \int \frac{1+t^2}{2t} \frac{2}{1+t^2} dt$$
$$= \int \frac{1}{t} dt = \ln|t| + c$$
$$= \ln\left|\tan\frac{x}{2}\right| + c$$

B) Les intégrales de types : $\int \cos^n x \ dx$. Ou $\int \sin^n x \ dx$.

Premier cas: *n* est impair.

On utilise la formule $\cos^2 x + \sin^2 x = 1$: pour l'indice n-1 qui est une puissance paire, ce qui permet de donner une intégrale de type

$$\int f'(x)[f(x)]^m dx.$$

Exemple:

$$\int \sin^3 x \, dx = \int \sin^2 x \sin x \, dx = \int (1 - \cos^2 x) \sin x \, dx$$

$$= \int (\sin x - \cos^2 x \sin x) \, dx$$

$$= \int \sin x \, dx + \int (-\sin x) \cos^2 x \, dx = -\cos x + \frac{1}{3} \cos^3 x + c, c \in \mathbb{R}$$

Deuxième cas: n est pair.

Dans ce cas on utilise la forme linéaire de $\sin^2 x$ et $\cos^2 x$ c'est-à-dire les deux formules $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$ et $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$.

Exemple:

$$\int \cos^4 x \, dx = \int (\cos^2 x)^2 dx = \int \left[\frac{1}{2} (1 + \cos 2x) \right]^2 dx$$

$$= \frac{1}{4} \int (1 + \cos^2 2x + 2\cos 2x) dx$$

$$= \int \frac{1}{4} dx + \frac{1}{2} \int \cos 2x \, dx + \frac{1}{4} \int \cos^2 2x \, dx$$

$$= \frac{x}{4} + \frac{1}{4} \sin 2x + \frac{1}{4} \int \cos^2 2x \, dx.$$

mais dans $\int \cos^2 2x \, dx$ on pose: $t = 2x \implies dt = 2 \, dx \implies dx = \frac{dt}{2}$.

$$\int \cos^2 2x \, dx = \frac{1}{2} \int \cos^2 t \, dt = \frac{1}{2} \int \frac{1}{2} (1 + \cos 2t) dt$$

$$= \int \left(\frac{1}{4} + \frac{1}{4} \cos 2t\right) dt$$

$$= \int \frac{1}{4} dt + \frac{1}{4} \int \cos 2t \, dt$$

$$= \frac{t}{4} + \frac{1}{8} \sin 2t + c_1$$

$$= \frac{x}{2} + \frac{1}{8} \sin 4x + c_1$$

Donc

$$\int \cos^4 x \, dx = \frac{x}{4} + \frac{1}{4} \sin 2x + \frac{x}{8} + \frac{1}{32} \sin 4x + c$$

C) Intégrale de type : $\int \cos^n x \sin^m x \, dx$, $n \in \mathbb{N}$

Premier cas: l'un des deux indices (n; m) est un entier impair.

C'est pratiquement la même chose comme (**B**) on applique la même méthode pour l'indice impair, mais si les deux sont impairs alors le meilleurs choix est le plus petit.

Exemple Calculer $I = \int \cos^5 x \sin^2 x dx$. On a

$$I = \int \cos^4 x \sin^2 x \cos x \, dx$$

$$= \int (1 - \sin^2 x)^2 \sin^2 x \cos x \, dx$$

$$= \int (1 + \sin^4 x - 2\sin^2 x)\sin^2 x \cos x \, dx$$

$$= \int (\sin^2 x \cos x + \sin^6 x \cos x - 2\sin^4 x \cos x) \, dx$$

$$= \int \sin^2 x \cos x \, dx + \int \sin^6 x \cos x \, dx - 2 \int \sin^4 x \cos x \, dx$$

$$= \frac{1}{3} \sin^3 x + \frac{1}{7} \sin^7 x - \frac{2}{5} \sin^5 x + c, \qquad c \in \mathbb{R}.$$

Exemple Calculer $I = \int \cos^6 x \sin^3 x \, dx$. On a

$$I = \int \cos^6 x \sin^2 x \sin x \, dx$$

$$= \int \cos^6 x (1 - \cos^2 x) \sin x \, dx$$

$$= \int (\cos^6 x \sin x - \cos^8 x \sin x) \, dx$$

$$= -\int \cos^6 x (-\sin x) \, dx + \int \cos^8 x (-\sin x) \, dx$$

$$= -\frac{1}{7} \cos^7 + \frac{1}{9} \cos^9 + c \, , c \in \mathbb{R}.$$

Exemple Calculer $I = \int \cos^7 x \sin^5 x \, dx$. On a

$$\begin{split} I &= \int \cos^7 x \sin^5 x \, dx = \int (\sin^2 x)^2 \, \sin x \cos^7 x \, dx \\ &= \int (1 - \cos^2 x)^2 \sin x \cos^7 x \, dx \\ &= -\int \cos^7 x \, (-\sin x) dx - \int \cos^{11} x \, (-\sin x) dx + 2 \int \cos^9 x \, (-\sin x) \, dx \\ &= -\frac{1}{8} \cos^8 x - \frac{1}{12} \cos^{12} x + \frac{2}{10} \cos^{10} x + c \,, \qquad c \in \mathbb{R}. \end{split}$$

Deuxième cas : Les deux indices (n; m) sont des entiers pairs.

On applique la formule suivante: $\sin x \cos x = \frac{1}{2} \sin 2x$ et la forme linéaire de cosinus ou sinus

Exemple Calculer $I = \int \cos^4 x \sin^4 x dx$. On a

$$I = \frac{1}{16} \int (\sin 2x)^4 dx = \frac{1}{32} \int \sin^4 t \ dt. \qquad \text{qui est de type } (\mathbf{B}).$$

 $\textbf{D) Int\'egrale de type} \int \cos\alpha x \cos\beta x \, dx, \quad \int \sin\alpha x \sin\beta x \, dx \, , \int \sin\alpha x \cos\beta x \, dx \, \, , \, \, \alpha \ et \ \beta \in \mathbb{R}^*.$

On utilise les formules suivantes :

$$\cos \alpha x \cos \beta x = \frac{1}{2} [\cos(\alpha + \beta)x + \cos(\alpha - \beta)x]$$

$$\sin \alpha x \sin \beta x = \frac{1}{2} [-\cos(\alpha + \beta)x + \cos(\alpha - \beta)x]$$

$$\sin \alpha x \cos \beta x = \frac{1}{2} [\sin(\alpha + \beta)x + \sin(\alpha - \beta)x].$$

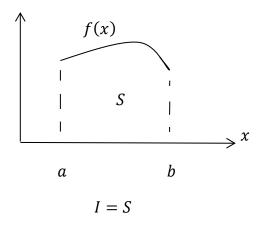
Exemple Calculer $\int \sin 4x \sin 3x \, dx$

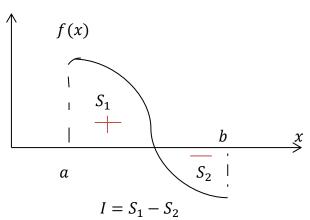
$$\int \sin 4x \sin 3x \, dx = \frac{1}{2} \int \left[-\cos 7x + \cos x \right] dx$$
$$= \frac{1}{2} \left[-\frac{1}{7} \sin 7x + \sin x \right] + c$$
$$= -\frac{1}{14} \sin 7x + \frac{1}{2} \sin x + c, \qquad c \in \mathbb{R}.$$

Intégrale définie

Interprétation géométrique

L'intégrale définie de f entre a et b, notée $\int_a^b f(x)dx$





Définition Soit f une fonction continue sur [a, b]. L'intégrale définie de f entre a et b est le nombre réel défini par :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

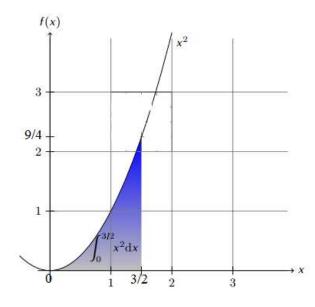
où F est une primitive de f sur [a, b].

Remarque

Il y a une différence entre l'intégrale définie et l'intégrale indéfinie d'une fonction $\int f(x)dx$ s'appelle une intégrale indéfinie de f, c'est une fonction primitive de f. $\int_a^b f(x)dx$ s'appelle une intégrale définie de f, c'est un nombre réel.

Exemple

$$\int_{0}^{\frac{3}{2}} x^{2} dx = \left[\frac{1}{3}x^{3}\right]_{0}^{\frac{3}{2}} = \frac{1}{3}\left(\frac{3}{2}\right)^{3} = \frac{9}{8}.$$



Exercice Calculer $\int_{1}^{2} x^{2} \ln x \, dx$

Solution : (intégration par parties)

$$\int x^2 \ln x \, dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \frac{1}{x} dx = \frac{x^3}{3} \ln x - \frac{x^3}{9} + c$$

Donc

$$\int_{1}^{2} x^{2} \ln x \, dx = \left[\frac{x^{3}}{3} \ln x - \frac{x^{3}}{9} + c \right]_{1}^{2} = \frac{8}{3} \ln 2 - \frac{8}{9} + c - \left(-\frac{1}{9} + c \right) = \frac{8}{3} \ln 2 - \frac{7}{9}.$$

Proposition (opérations élémentaires)

Soient f et g deux fonctions intégrables sur l'intervalle [a, b] et $\lambda \in \mathbb{R}$. Alors on a :

1)
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$
.

2)
$$\int_a^b f(x)dx = -\int_b^a f(x)dx.$$

3)
$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx.$$

4)
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$
, tel que $a \le c \le b$. relation de Chasles.

5)
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$
.

6) Si
$$f(x) = 0 \ \forall x \in [a, b]$$
 alors $\int_a^b f(x) dx = 0$.

7) Si
$$f(x) \le g(x) \ \forall x \in [a, b]$$
alors $\int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$.

8) Si
$$n \le f(x) \le m$$
, $\forall x \in [a, b]$ (tels que $n, m \in \mathbb{R}$) alors

$$n(b-a) \le \int_{a}^{b} f(x) dx \le m(b-a).$$

9) Si $n \le f(x) \le m$, et $g(x) \ge 0 \ \forall x \in [a, b]$ (tels que $n, m \in \mathbb{R}$) alors

$$n\int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x)g(x) dx \le m\int_{a}^{b} g(x) dx.$$

10) $f \times g$ est une fonction intégrable sur [a, b] mais en général

$$\int_{a}^{b} f(x)g(x) dx \neq \left(\int_{a}^{b} f(x) dx\right) \left(\int_{a}^{b} g(x) dx\right)$$

Preuve de (5): On a

$$-|f(x)| \le f(x) \le |f(x)| \quad \forall x \in [a, b],$$

par suite

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x)| dx$$

c'est à dire

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$