Exercices sur les écoulements compressibles

Exercice

Une sonde anémométrique mesure la vitesse d'un écoulement compressible. Elle est constituée d'un capteur de pression totale (pression d'arrêt P_a), d'un capteur de pression statique P_{st} et d'un capteur de température (sonde thermocouple) qui provoque un arrêt adiabatique dans lequel on mesure T_a .

- 1. Calculer la vitesse en fonction de la mesure de P_a , P_{st} et T_a .
- Montrer qu'il existe une vitesse limite ne dépendant que de Ta.

On fera les applications numériques avec $T_a = 288 \text{ K}$, $P_a = 2 \text{ bars et } P_{st} = 1 \text{ bar}$.

Exercice

Soit une onde de choc droite. Montrer qu'à la traversée de l'onde de choc :

1. P_2/P_1 s'écrit en fonction de γ et Ma_1 :

$$\frac{P_2}{P_1} = \frac{2\gamma}{\gamma + 1} M a_1^2 - \frac{\gamma - 1}{\gamma + 1}$$
(3)

2. P_1/P_2 s'écrit en fonction de γ et Ma_2 :

$$\frac{P_1}{P_2} = \frac{2\gamma}{\gamma + 1} M a_2^2 - \frac{\gamma - 1}{\gamma + 1} \tag{4}$$

3. En déduire une relation entre Ma_1 et Ma_2 .

Les indices 1 et 2 représentent un point en amont et un point en aval du choc respectivement.

EXERCICE

Le bouclier thermique

La rentrée dans l'atmosphère des engins balistiques et plus particulièrement des navettes spatiales pose le problème du "bouclier thermique". En effet, l'échauffement cinétique de l'air à la traversée de l'onde de choc est tel que la température de la paroi augmente très rapidement avec le nombre de Mach de l'engin.

- Dans le but d'estimer cette température de paroi, on calculera la température d'arrêt pour deux valeurs différentes du nombre de Mach de l'engin, Ma₁ = 5 et 10. On supposera qu'à l'altitude considérée, soit z = 20 km, la température de l'air est 217K.
- 2. En assimilant l'onde de choc détachée qui se forme à l'avant de l'engin à une onde de choc plane, on estimera la température T_2 de l'air entre l'onde de choc et la paroi.