EXERCICE I - DÉPERDITIONS THERMIQUES

Les murs d'une maison sont constitués de briques creuses ; du côté extérieur, les briques sont recouvertes d'un enduit-ciment, et du côté intérieur sont fixés des panneaux comportant un isolant et du plâtre cartonné.

Matériau	Enduit	Briques	Isolant	Plâtre
Épaisseur e en cm	1,0	20	8,0	1,0
Conductivité thermique λ en W.m ⁻¹ .K ⁻¹	1,25	0,50	0,040	0,33

Données :

• Résistance thermique superficielle intérieure : $r_{si} = \frac{1}{h_s} = 0,11 \text{ m}^2.\text{K.W}^{-1}$

• Résistance thermique superficielle extérieure : $r_{se} = \frac{1}{h_e} = 0.06 \text{ m}^2.\text{K.W}^{-1}$

• Température intérieure : θ_i = + 20,0°C

Température extérieure : θ_e = - 10,0°C

- 1°/ Calculer la résistance thermique R pour un 1,00 m² de surface de mur. En déduire le coefficient U de transmission thermique de surface.
- 2°/ Déterminer les températures de surface : θ_{si} (intérieure) et θ_{se} (extérieure) .

- B Les caractéristiques des parois d'une maison sont les suivantes :

Parois	Superficie	Coefficient de transmission thermique de surface		
Murs sans isolation	$S_1 = 72.8 \text{ m}^2$	$U_1 = 1,10 \text{ W.m}^{-2}.\text{K}^{-1}$		
Vitrage simple (fenêtres, portes)	S ₂ = 12,7 m ²	U ₂ = 5,00 W.m ⁻² .K ⁻¹		
Plafonds sous combles (10 cm d'isolant)	S ₃ = 72,0 m ²	U ₃ = 0,38 W.m ⁻² .K ⁻¹		
Plancher sur vide sanitaire	S ₄ = 72,0 m ²	U ₄ = 0,91 W.m ⁻² .K ⁻¹		

- 1°/ Donner l'expression littérale du flux thermique total φ transmis à travers l'ensemble des parois.
- 2°/ Calculer numériquement \(\phi \).
- 3°/ Le prix moyen du kWh d'électricité est de 0,076 €. Calculer le coût C du fonctionnement d'un chauffage qui permettrait de compenser les pertes thermiques par transmission au travers des parois, pendant 10 jours de froid.

Exercice 2

Les murs d'une maison sont constitués de briques creuses :

- du côté extérieur, les briques sont couvertes d'un enduit-ciment,
- du côté intérieur, sont fixés des panneaux comportant un isolant et du plâtre cartonné.

Matériau	Enduit-ciment	Briques	Isolant	Plâtre
Épaisseur e (cm)	1.00	20.00	8.00	1.00
Conductivité thermique λ (W.m ⁻¹ .K ⁻¹)	1.25	0.50	0.04	0.33

On donne:

Résistance thermique superficielle intérieure : $1/\alpha_i = 0.11 \text{ m}^2.\text{K.W}^{-1}$ Résistance thermique superficielle extérieure : $1/\alpha_e = 0.06 \text{ m}^2.\text{K.W}^{-1}$

Température intérieure : T_i = +20 °C Température extérieure : T_e = -10 °C

- 1. Calculer la résistance thermique R_{th} pour 1 m² de surface de mur. En déduire le coefficient K de transmission thermique de surface.
- 2. Déterminer les températures de surface (superficielles) : T_{pi} (intérieur) et T_{pe} (extérieur).