TD*№*3

Exercice 1:

On considère un cristal d'arséniure d'indium (InAs) sans impuretés à T=300K. Calculer 1-Le temps d'inter collusion τ_n et τ_p .

2-La conductivité intrinsèque du cristal σ_i on donne la masse effective de l'électron $m_n^* = 2,73.10^{-32}$, la masse effective des trous $m_p^* = 3,64.10^{-31}$, la mobilité des électrons libres $\mu_n = 3,3$ m²v⁻¹s⁻¹, la mobilité des trous $\mu_p = 0,046$ m²V⁻¹s⁻¹. La concentration des électrons libres n=1,561.10¹⁵cm⁻³.

Exercice 2:

Un échantillon de silicium de concentration intrinsèque $n_i=1,5.10^{10} cm^{-3}$ est dopé avec des atomes donneurs de concentration $N_D=10^{16}$ cm⁻³, la durée de vie des charges minoritaires $\tau_p=20\mu s$.

- 1) Calculer la durée de vie des électrons.
- 2) Calculer le taux de génération et de recombinaison des électrons et des trous $=50 \, \mu m$.

Exercice3:

Les concentrations des donneurs et des accepteurs d'une jonction PN à l'équilibre sont 5. 10^{15} cm⁻³ et 10^{17} cm⁻³ respectivement, T=300K.

- 1) Trouver le niveau de Fermi de chaque région par rapport au niveau de Fermi intrinsèque.
- 2) Calculer le potentiel de diffusion.
- 3) Calculer x_n , x_p et E_{max} .

On donne $n_i=1,5.10^{10} \text{cm}^{-3}, \epsilon_0=8,85.10^{-12} \text{F.m}^{-1}$.

Exercice 4:

Un barreau de silicium intrinsèque de 45 cm de longueur et 10cm de diamètre dont $n_i = 10^{10}$ cm⁻³. On dope uniformément la région A de ce semi conducteur avec les atomes de gallium (Ga) dont la concentration égale à 10^{16} cm⁻³ puis on dope uniformément la région B avec les atomes d'arsenic (As) de concentration égale à 10^{17} cm⁻³.

On donne : $\varepsilon = 10^{-12}$ F/cm.

- 1-Ou se situe la région de type N et la région de type P.
- 2-Calculer la concentration des majoritaires et minoritaires dans chaque types de région $(n_n; n_n)$.
- 3- Calculer le potentiel de diffusion à T=300K.
- 4- Calculer x_n , x_p , Q^{-} , et $E_{\text{max.}}$
- 5- Comment seraient modifier x_n et x_p si on met un dopage plus important du coté $N_D = 10^{20}$ cm⁻³.

Exercice 5:

1- On considère une jonction PN dont la région N est dopée avec $N_D = 10^{16} \text{cm}^{-3}$, polarisée en directe avec une tension V=0,8V à 300K. Calculer la concentration des trous minoritaires à l'extrémité de la zone de charge d'espace.

- **2-** Calculer la tension de polarisation appliquée à laquelle le courant de la jonction atteint 95% de sa valeur de courant de saturation à 300K.
- **3-** Trouver les concentrations N_A et N_D d'une jonction PN dans le cas des régions longues, $J_n(x) = 25 \text{A/cm}^2$ et $J_p(x) = 7 \text{A/cm}^2$, V = 0.7 V, $n_i^2 = 9,65.10^9 \text{cm}^{-3}$, $D_n = 21 \text{cm}^2/\text{s}$, $D_p = 10 \text{cm}^2/\text{s}$, $\tau_n = \tau_p = 5.10^{-7}$ s, $A = 2.10^{-4}$ cm².
- **4-** On suppose que $N_A = 5. \ 10^{16} \text{cm}^{-3}$, $N_D = 10^{16} \text{cm}^{-3}$, $\tau_n = \tau_p = 10^{-6} \text{ s. A} = 1, \ 2.10^{-5} \text{ cm}^2$.
- a) Calculer le courant de saturation à 300K.
- b) Calculer I_d et I_{inv} pour $V=\pm 0.7V$.
- c) On suppose que les régions N et P sont supérieures à la longueur de diffusion calculer la tension appliquée pour obtenir un courant direct de 1mA à 300K.